
VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE (VJTI) MATUNGA, MUMBAI 400 019

(Autonomous Institute affiliated to University of Mumbai)

Curriculum (Scheme of Instruction & Evaluation and Course contents)

For Second Year Undergraduate Programme Leading to Bachelor of Technology (B. Tech.) Degree in

Electronics Engineering

Implemented from Academic Year 2014-15

VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE

(Autonomous Institute affiliated to University of Mumbai)

Curriculum

(Scheme of Instruction & Evaluation and Course contents)

For

Second Year Undergraduate Programme Leading to Bachelor of Technology (B. Tech.)

In

106 Electronics Engineering

PROGRAM OUTCOMES (POs)

Engineering Graduate will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Electronics Engineering Graduate will be able to:

- 1. Design, develop and test electronic systems in the areas related to analog and digital electronics, electronic instrumentation, signal processing and VLSI design.
- 2. Analyze, design and implement electronic systems to strive balance between increasing complexity, robustness and performance of systems.
- 3. Design electronic software and hardware systems, components or process to meet desired needs within realistic constraints.

		S Y B. Tech (Electronics	Engineering),	SEMEST	ER II	I		
		Scheme of Instruction	0 0,7	1		neme of Evaluation		
S. No.	Course Code	Course Title	L-T-P (Hours/week)	Credits	ТА	IST	ESE	ESE hours
1.	MA2003S	Mathematics for Electrical Engineers - I	3-1-0=4	4	10	30	60	3
2.	CE2012S	Environmental Studies	3-0-0=3	3	10	30	60	3
3.	EC2001S	Electrical Networks	3-1-0=4	4	10	30	60	3
4.	EC2002T	Electronics Circuit Analysis and Design - I	3-0-0=3	3	10	30	60	3
	EC2002P	Electronics Circuit Analysis and Design - I Lab	0-0-2=2	1	100% CIE			
5.	EC2003T	Digital Combinational Circuits	3-0-0=3	3	10	30	60	3
	EC2003P	Digital Combinational Circuits Lab	0-0-2=2	1	100% CIE			
6.	EC2004T	Numerical Techniques	3-0-0=3	3	10	30	60	3
	EC2004P	Numerical Techniques Lab	0-0-2=2	1		100% C	IE	
7.	EC2005A	Economics for Engineers	3	3 units		100% C	IE	
		Total	29	23				

		S Y B. Tech (Electronics	Engineering),	SEMEST	ER IV	/		
		Scheme of Instruction		Scheme of Evaluation				
S. No.	Course Code	Course Title	L-T-P (Hours/week)	Credits	ТА	IST	ESE	ESE hours
1.	MA2013S	Mathematics for Electrical Engineers - II	3-1-0=4	4	10	30	60	3
2.	EC2011S	Signals and Systems	3-1-0=4	4	10	30	60	3
3.	EC2013T	Digital Sequential Circuits	3-0-0=3	3	10	30	60	3
	EC2013P	Digital Sequential Circuits Lab	0-0-2=2	1		100% C	IE	
4.	EC2012T	Electronics Circuits Analysis and Design - II	3-0-0=3	3	10	30	60	3
	EC2012P	Electronics Circuits Analysis and Design - II Lab	0-0-2=2	1		100% C	IE	
5.	EC2014T	Measurements and Instrumentation	3-0-0=3	3	10	30	60	3
	EC2014P	Measurements and Instrumentation Lab	0-0-2=2	1		100% C	IE	
6.	EC2015T	Microprocessor and Microcontroller	3-0-0=3	3	10	30	60	3
	EC2015P	Microprocessor and Microcontroller Lab	0-0-2=2	1		100% C	IE	
7.	HM2001L	Presentation and Communication Skills	1-0-2=3	2		100% C	IE	
		Total	31	26				

Abbreviations: L: Lecture, T: Tutorial, P: Practical, TA: Teacher Assessment / Term work Assessment, IST: In Semester Tests (comprise of average of two In semester tests), ESE: End Semester Written Examination, CIE: Continuous In-semester Evaluation

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - III
Course Code	MA2003S
Course Title	MATHEMATICS FOR ELECTRICAL ENGINEERS – I

COURSE OUTCOMES

After completion of this course, students should be able to

- Evaluate the Fourier components of various functions.
- Compute the Laplace transform of various functions
- Analyse and solve differential equation using Laplace transforms.
- Compute and characterise various behaviours of complex variables.

	1.1 Function of Complex variable. Analytic function, Necessary and sufficient conditions for f(Z) to be analytic. Cauchy-Riemann equations in polar accordinates.
	in malan acondinates
	in polar coordinates.
	1.2 Milne-Thomson method to determine analytic function $f(Z)$ when its
	real or imaginary part or its combination is given.
	1.3 Harmonic function, orthogonal trajectories. Transformations
	1.4 Conformal mapping and standard transformations such as Rotation,
	Magnification and inversion.
	1.5 Bilinear Transformation and Mapping under bilinear Transformation
	with geometrical interpretation. Cross ratio and fixed points.
Module II	Complex Variables II
	2.1 Line integral of a function of Complex variable, Properties of line
4	integral Cauchy's theorem for analytic function. Cauchy's Goursat
	theorem (without proof), Cauchy's integral formula and deductions.
,	2.2 Series of Complex Term: Taylor's and Laurent's Series (without
	proof), Singularities and poles, Residues, Residue Theorem and its
	evaluation.
1	2.3 Application of Residue to evaluate real Function.
Module III	Laplace Transforms I
	3.1 Functions of bounded variation
	3.2 Linear property of Laplace transforms.
	3.3 Laplace transforms of standard functions such as;
	1, t^n , e^{at} , sinat, cosat, sinhat, $erf(t)$
	3.4 Change of scale property ,First shifting theorem, Second shifting theorem

	$L\{t^{n} f(t)\}, L\{f'(t)\}, L\{\frac{f(t)}{t}\}, L\{\int_{0}^{t} f(u)du\}, L\{\frac{d^{n}}{dt^{n}} f(t)\}$
Module IV	Laplace Transform II
	 4.1 Inverse Laplace transform using linear property, theorems, partial fractions and convolution theorem. 4.2 Unit step functions, Heaviside, Dirac delta functions, Periodic functions and their Laplace transforms. 4.3 Application to solve ordinary differential equations with one dependent variable.
Module V	Fourier Series
	 Orthogonal, Orthonormal sets, Expressions of a Function in Series of Orthogonal Functions. 1.2. Dirchlet's conditions. 1.3. Fourier series of periodic function with period 2π, 2l. 1.4. Dirchlet's theorem, even and odd functions. 1.5. Half range expansions, Parseval's relations. 1.6. Complex form of Fourier series. 1.7. Fourier integral and Fourier transform.
Text Books:	
1.	Advanced Engineering Mathematics, H K Dass, S Chand & Co. Ltd, 3rd Edition, 2006
2.	Higher Engineering Mathematics, Dr B S Grewal, Khanna Publications, 39th Edition,2005
3.	A Text Book of Engineering Mathematics, N.P. Bali & Dr. Manish Goyal, Eight Edition, Laxmi Publication.
4.	Complex Variables & Applications: Churchil, Mc Graw Hill, 2003, 7th Edition
Reference Boo	oks:
1.	Theory of functions of complex variables, Shanti Narayan, S Chand & Co, 2006.
2.	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Ltd
3.	Engineering Mathematics for semester III, T Veerrajan, Tata McGraw Hill.
4.	Matrices, A R Vasishtha, 2005
5.	Advanced Engineering Mathematics, Jain & Iyengar, II Edition, Narosa Publication

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – III
Course Code	CE2012S
Course Title	ENVIRONMENTAL STUDIES

After completion of this course, students should be able to

- Identify and analyse impact of human development on natural resources.
- Compute the impact of environmental problems on socio economic growth and human health.
- Evaluate strategies, technologies, and methods for sustainable management of environmental systems and for the remediation of degraded environment.
- Identify impact of human population on the environment and human health.

Module I	Multidisciplinary Nature of Environmental Studies
	Definition, Scope and Importance, Need for Public awareness
Module II	Natural Resources
	 Renewable and Non-renewable Resources, Natural resources and associated problems. a. Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people. b. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. c. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. d. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, Case studies. e. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies. f. Land resources: Land as a resource, land degradation, man induced
	landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of

	resources for sustainable lifestyles.
Module III	Ecosystems
	 Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids, Introduction, types, characteristic features, structure and function of the following ecosystem: a. Forest ecosystem b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)
Module IV	Biodiversity and its Conservation
	Introduction, definition: genetic, species and ecosystem diversity. Bio- geographical classification of India. <i>Value of biodiversity</i> : consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at Global, National and Local levels. India as a mega-diversity nation. Hot-spots of biodiversity. <i>Threats to biodiversity</i> : habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. <i>Conservation of biodiversity</i> : in-situ and ex-situ conservation of biodiversity.
Module V	Environmental Pollution
	 Definition, Causes, effects and control measures of ; a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Thermal pollution g. Nuclear hazards.
	<i>Solid waste management</i> : Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies. <i>Disaster management</i> : Foods, earthquake, cyclone and landslides.
Module VI	Social Issues and Environment
	Unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns. Case studies. <i>Environmental ethics</i> : Issues and possible solutions. Climate change,
	global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation. Consumerism and waste

	products. Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public awareness.
Module VII	Human Population and Environment
	Population growth, variation among nations. Population explosion— Family Welfare Programme. Environment and human health. Human rights. Value education. HIV/AIDS. Women and Child Welfare. Role of Information Technology in environment and human health. Case Studies.
Module VIII	Field Work
	Visit to a local area to document environmental assets— river/forest/grassland/hill/ mountain. Visit to a local polluted site— Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds.
Text Books:	
1.	Soli J Arceivala and Shyam R. Asolekar, Environmental Studies A Practitioner's Approach, Tata McGraw Hill Education Private Limited, New Delhi, First Edition, 2012.
2.	R. Rajagopalan, Environmental Studies: From Crisis to Cure, Oxford University Press, USA, Second Edition, 2011.
3.	Benny Joseph, Environmental Studies, McGraw Hill Education (India) Private, Second Edition, 2008
Reference Boo	oks:
1.	Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T., Environmental Encyclopedia, Jaico Publ. House, Mumbai, 2001
2.	Jadhav, H & Bhosale, V.M., Environmental Protection and Laws. Himalaya Pub. House, Delhi, 1995
3.	Wanger K.D., Environmental Management. W.B. Saunders Co. Philadelphia, USA, 1998

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - III
Course Code	EC2001S
Course Title	ELECTRICAL NETWORKS

After completion of this course, students should be able to

- Analyse electrical networks using various Theorems.
- Characterise a network in terms of frequency and time domain parameters.
- Represent a network in terms of its two port network parameters.
- Obtain the frequency domain representations using Fourier analysis

Module I	Review
	DC and AC circuits.
Module II	Mesh and Node Analysis
	Mesh and Node Analysis of circuits with independent and dependent
	sources.
Module III	Linearity, Superposition and Source Transformation
	Linearity, Superposition, Current AND Voltage Source Transformation
Module IV	Network Theorems
	Thevenin's and Norton's Theorem (with independent and dependent
	sources), Maximum power transfer theorem.
Module V	Circuit Analysis
	Introduction to Graph Theory. Tree, link currents, branch voltages, cut set
	and tie set. Mesh and Node Analysis, Gauss Elimination Technique,
	Duality.
Module VI	Time and Frequency Response of Circuits
	First and second Order Differential equations, initial conditions.
	Evaluation and analysis of Transient and Steady state responses using
	Classical Technique as well as by Laplace Transform (for simple circuits
	only). Transfer function, Concept of poles and zeros. Frequency response
	of a system (concepts only).

Module VII	Two - port Networks
	Concept of two- port network. Driving point and Transfer Functions, Open
	Circuit impedance (Z) parameters, Short Circuit admittance (Y)
	parameters, Transmission (ABCD) parameters. Inverse Transmission
	(A'B'C'D') parameters. Hybrid (h) parameters. Inter Relationships of
	different parameters.
	Interconnections of two - port networks. T and Pi representation.
	Terminated two - port networks.
Module VIII	Fourier Series
	Orthogonal basis functions, Representation of a signal in terms of
	weighted Orthogonal basis functions, Calculation of weights (coefficients)
	in MSE sense, Extension to periodic signal in terms of Fourier Series
	Representation. Complex and Trigonometric Fourier series, Properties of
	Fourier series, Power Spectral Density
Module IX	The Fourier Transform (FT)
Module IX	The Fourier Transform (FT) Definition and Properties, FT of basic signals, FT of periodic signals,
Module IX	
	Definition and Properties, FT of basic signals, FT of periodic signals,
Module IX Text Books:	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density.
Text Books:	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw
	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000.
Text Books:	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering
Text Books: 1. 2.	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002.
Text Books: 1.	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002. bks:
Text Books: 1. 2.	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002. ks: Artice M Davis, Linear Circuit Analysis, Thomson Asia Pvt. Ltd.,
Text Books: 1. 2. Reference Boo	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002. bks: Artice M Davis, Linear Circuit Analysis, Thomson Asia Pvt. Ltd., Singapore, first edition, 2001
Text Books: 1. 2. Reference Boo	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002. bks: Artice M Davis, Linear Circuit Analysis, Thomson Asia Pvt. Ltd., Singapore, first edition, 2001 M. E. Van Valkenburg, Network Analysis, Prentice Hall of India, third
Text Books:1.2.Reference Boo1.	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002. ks: Artice M Davis, Linear Circuit Analysis, Thomson Asia Pvt. Ltd., Singapore, first edition, 2001 M. E. Van Valkenburg, Network Analysis, Prentice Hall of India, third edition.
Text Books: 1. 2. Reference Boo 1.	Definition and Properties, FT of basic signals, FT of periodic signals, Energy Spectral Density. A Sudhakar and S P Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000. William H Hayt, Jack E Kemmerly and Steven M Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2002. bks: Artice M Davis, Linear Circuit Analysis, Thomson Asia Pvt. Ltd., Singapore, first edition, 2001 M. E. Van Valkenburg, Network Analysis, Prentice Hall of India, third

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - III
Course Code	EC2002T
Course Title	ELECTRONICS CIRCUIT ANALYSIS AND DESIGN - I

After completion of this course, students should be able to

- Describe qualitatively the behaviour and characteristics of various semiconductor devices and circuits.
- Analyse BJT and FET transistor circuits for its DC and AC characteristics.
- Compare and characterise different amplifier circuits.
- Design amplifier circuits using BJT and FET for small applications.

Module I	Semiconductor Materials and Diodes
	Review of Semiconductor Materials and Properties, The PN Junction,
	Introduction to Semiconductor Diode Theory. Diode Circuits: DC Analysis
	and Models, AC Equivalent Circuits, Other Diode Types - Solar Cell,
	Photodiode, Light-Emitting Diode, Schottky Barrier Diode, Zener Diode,
	Temperature Effects, Understanding Manufacturer's Specifications
Module II	Diode Circuits
	Design of Rectifier Circuits, Half Wave Rectification, Full Wave
	Rectification, Filter, Ripple Voltage and Diode Current, Voltage Doubler
	Circuit, Zener Diode Circuits, Clipper and Clamper Circuits, Multiple-
	Diode Circuits, Photodiode and LED Circuits.
Module III	Bipolar Junction Transistor
	Basic Bipolar Junction Transistor, Transistor Structures, NPN Transistor:
	Forward-active Mode Operation, PNP Transistor : Forward-active Mode
	Operation, Circuit Symbols and Conventions, Current-Voltage
	Characteristics, Non ideal Transistor Leakage Currents and Breakdown,
	DC Analysis of Transistor Circuits, Common-Emitter Circuits, Load Line
	and Modes Of Operation, Common Bipolar Circuits: DC Analysis, Basic
	Transistor Applications – Switch, Amplifier, Bipolar Transistor Biasing –
	Single Base Resistor Biasing, Voltage Divider Biasing and Bias Stability,
	Integrated Circuit Biasing, Multistage Circuits.
Madula IV	Dagia DIT Amplifiang
Module IV	Basic BJT Amplifiers
	Analog Signals and Linear Amplifiers, The Bipolar Linear Amplifier,
	Graphical Analysis and AC Equivalent Circuit, Small Signal Hybrid $-\Box$ Equivalent Circuit of the Bipolar Transistor, Hybrid $-\Box$ Equivalent
	\square Equivalent Circuit of the Bipolai Halisistor, Hybrid $-\square$ Equivalent

	Circuit Including the Early Effect, Expanded Hybrid – □ Equivalent Circuit, Other Small – Signal Parameters And Equivalent Circuits, Basic Transistor Amplifier Configurations, Common Emitter Amplifiers, AC Load Line Analysis, Common Collector Emitter Follower Amplifier, Common Base Amplifier, The Three Basic Amplifier configurations: Summary and Comparison, Multistage Amplifiers, Power Considerations, Environmental Thermal Considerations in Transistor Amplifiers, Manufacturers' Specifications.
Module V	Field Effect Transistor
	Junction Field–Effect Transistor, MOS Field–Effect Transistor, MOSFET DC Circuit Analysis, Basic MOSFET Applications: Switch, Digital Logic Gate and Amplifier. Temperature effects in MOSFETs, Input Protection in MOSFET. Power FET (VMOS).
Module VI	Basic FET Amplifiers
	The MOSFET Amplifier, Basic Transistor Amplifier Configurations, Common Source Amplifier, Source Follower Amplifier, Common Gate Configuration, Three Basic Amplifier Configuration: Summary and Configuration, Single – Stage Integrated Circuit MOSFET Amplifiers, Multistage Amplifiers, Basic JFET Amplifiers
Text Books:	
1.	Donald A. Neamen, Electronic Circuit Analysis and Design, Second edition, McGraw Hill International edition 2001
2.	Martin Roden , Gordon Carpenter, William Wieserman, Electronic Design, Fourth edition, Shroff Publishers, 2002
Reference Boo	ok:
1.	Donald Schilling & Charles Belove, Electronic Circuits Discrete and Integrated, Third edition, McGraw Hill International edition, 1989
2.	David Bell, Electronic Devices and Circuits, 5E Oxford University Press

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – III
Course Code	EC2002P
Course Title	ELECTRONICS CIRCUIT ANALYSIS AND DESIGN – I
	LAB

After completion of this course, students should be able to

- Design electronic circuits to meet desired specifications.
- Analyse and design electronic circuits such as wave shaping circuits, multistage amplifiers, and power amplifiers.
- Explain basic analog electronic circuit design techniques using diodes, bipolar junction transistors and field effect transistors.

- 1. To study forward and reverse characteristics of PN junction diode.
- 2. To study forward and reverse characteristics of Zener diode.
- 3. To study Zener diode as voltage regulator.
- 4. To study static and dynamic characteristics of BJT
- 5. BJT bias circuit Design, assemble and test.
- 6. JEET/MOSFET bias circuits Design, assemble and test.
- 7. Design, assemble and test of BJT common-emitter circuit D.C and A.C performance: Voltage gain, input impedance and output impedance with bypassed and un-bypassed emitter resistor.
- 8. Design, assemble and test of BJT emitter-follower D.C and A.C performance: A.C. voltage gain, input impedance and output impedance.
- 9. Design, assemble and Test of JFET/MOSFET common-source and commondrain amplifiers – D.C and A.C performance: Voltage gain, input impedance and output impedance.
- 10. Frequency response of a common-emitter amplifier: low frequency, high frequency and mid frequency response.

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - III
Course Code	EC2003T
Course Title	DIGITAL COMBINATIONAL CIRCUITS

After completion of this course, students should be able to

- Represent data in various number systems and perform inter conversions between them.
- Analyse the behaviour of various logic circuits and logic families.
- Design various combinational circuits as per different specifications.
- Numerically analyse various logic circuits and perform Boolean reduction
- Design Parity circuits, Comparators, Adders, Subtractors, ALUs

Module I	Introduction
	Analog VS Digital systems, digital devices, integrated circuits,
	programmable logic devices, digital design levels, software aspects of
	digital design.
Module II	Number System
	Positional number systems, Binary and Hexadecimal number systems, general positional number systems conversions, arithmetic operations,
	representation of negative numbers, arithmetic operations on signed
	numbers, binary and gray codes, character codes, codes for detecting and
	correcting errors.
Module III	Logic Circuits
	Logic signals and gates, Boolean Algebra, theorems, combinational
	circuit analysis, combinational circuit synthesis – minimization,
	Karnaugh Maps, sum of products and product of sums expressions and their minimization, programmed minimization methods – Quine-Mc-
	Cluskey minimization algorithm, timing hazards – static and dynamic
	hazards, introduction to VHDL hardware description language.
Module IV	Logic Families
	CMOS logic; MOS transistors, basic CMOS inverter circuit, CMOS
	NAND and NOR gates, fan – in, fan – out, Electrical behavior of CMOS
	circuits, propagation delay, power consumption, CMOS logic families,
	bipolar logic introduction, BJT, TTL NAND and NOR gates, fan – in, fan
	– out, Electrical behavior of TTL circuits, propagation delay, power consumption. CMOS / TTL interfacing, Introduction to Emitter – coupled
	logic.

Module V	Combinational Logic Design
	Introduction to Combinational and Sequential Circuits: Introduction to combinational circuit: Realization of basic combinational functions like comparison, code conversion, decoding, multiplexing, demultiplexing, addition, subtraction. Delays and hazards in combinational circuits.
Module VI	Combinational Logic Modules and their applications
	Decoders, encoders, multiplexers, demultiplexers and their applications; Parity circuits and comparators; Arithmetic modules- adders, subtractors and ALU; Design examples
Text Books:	
1.	John F. Wakerley, Digital Design Principles and Practices, fourth edition, Pearson Education India, 2008.
2.	Stephen Brown & ZvonkoVranesic, Fundamentals of Digital logic with VHDL design, first edition, McGraw Hill International edition, 2000.
3.	Moris& Miller (Eds), Designing with TTL Integrated Circuits: Prepared by Staff of Texas Instruments, McGraw Hill International edition, 1981
4.	Khrate, Digital Electronics, Oxford University Press 2015

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - III
Course Code	EC2003P
Course Title	DIGITAL COMBINATIONAL CIRCUITS LAB

After completion of this course, students should be able to

- Design an electronic circuit with electronic devices and components for different applications
- Design a digital system and its application using sequential circuits, counters and shift registers.
- Perform truth table verification of flip flops

- 1. Realization of Logic Gates using discrete components and ICs.
- 2. Design of combinational logic circuits (Half Adder, Full Adder, Half Subtractor, Full Subtractor) using fundamental and Universal Logic gates
- 3. Design of Multiplexer, De-multiplexer,
- 4. Design of Encoder and Decoder circuits
- 5. Design of Code Converters
- 6. Truth-tables verification of Flip-Flops using logic gates.
- 7. Design of various types of registers.
- 8. Design of Shift Registers, Ring counter and Johnson counter
- 9. Design of Synchronous and Asynchronous counters.
- 10. VHDL for Combinational logic.
- 11. Study of various parameters of logical families and comparative study of TTL and CMOS.

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – III
Course Code	EC2004T
Course Title	NUMERICAL TECHNIQUES

After completion of this course, students should be able to

- Perform an error analysis for a given numerical method.
- Evaluate the roots of equations.
- Solve linear algebraic equations.
- Perform numerical integration and differentiation

Madula I	Europa in Numerical Computation
Module I	Errors in Numerical Computation
	Error types, analysis and estimation. Error propagation.
Module II	Roots of Equations
	Bracketing Methods – The Bisection method, The False position method.
	Open Methods - The Newton-Raphson method, The Secant method.
	(relevant engineering applications)
Module III	Systems of Linear Algebraic Equations
	Gauss-Elimination method - Technique, pitfalls, improvement. Gauss-
	Jordan method. LU decomposition and matrix inversion. Gauss-Seidel
	method. (relevant engineering applications)
Module IV	Curve Fitting
	Interpolation – Newton's divided difference, Lagrange Interpolating polynomials. Approximation - Least square approximation technique, linear regression, and polynomial regression. (relevant engineering applications)
Module V	Numerical Differentiation and Integration
	Methods based on interpolation and finite differences. (relevant
	engineering applications)
	The Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule. (relevant)
Text Books:	
1.	Seven C Chopra, Raymond C Canale, Numerical Methods for engineers,
1.	fourth edition, Tata McGraw Hill, 2002
2.	Robert J Schillig, Sandra L Harris, Applied numerical Methods for
۷.	Engineers First Edition Thomson AsiaPvt. Ltd., 2002

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – III
Course Code	EC2004P
Course Title	NUMERICAL TECHNIQUES LAB

After completion of this course, students should be able to

- Use wide range of standard numerical methods to solve complex engineering problems.
- Utilize Matlab as a programming tool in solving engineering problems.
- Demonstrate their ability to identify and address experimental uncertainty.
- Progress towards ongoing independent development of applying experimental and numerical methods to real engineering situations.

- 1. Design a simulation which shows how the bisection method works for finding roots of an equation f(x) = 0.
- 2. Design a simulation to illustrate the Newton-Raphson method of finding roots of an equation f(x) = 0.
- 3. Design a simulation to illustrate the convergence of the Secant method of finding roots of an equation f(x) = 0.
- 4. To develop a computer program to solve the set of non-linear equations using Gauss Seidal load flow algorithm.
- 5. To simulate and determine polynomial using method of Least Square Curve Fitting.
- 6. Write a function program that calculates the midpoint rule approximation for $\int f$ on the interval [a, b] with n subintervals. The inputs should be f, a, b and n.
- 7. Simulate the error of a trapezoid method integral.

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - III
Course Code	EC2005A
Course Title	ECONOMICS FOR ENGINEERS

After completion of this course, students should be able to

- Student shall know elementary principles of economics and would be able to use tools that are likely to find useful in their profession when employed in industry.
- Student shall know the current economic parameters /indicators/ policy debates.

Module I	Basic Principles and Methodology of Economics. Demand/Supply – elasticity –Government Policies and Application. Theory of the Firm and Market Structure. Basic Macro-economic Concepts (including GDP/GNP/NI/Disposable Income) and Identities for both closed and open economies. Aggregate demand and Supply (IS/LM). Price Indices (WPI/CPI), Interest rates, Direct and Indirect Taxes (<i>12 Lectures</i>)
Module II	Public Sector Economics –Welfare, Externalities, Labour Market. Components of Monetary and Financial System, Central Bank –Monetary Aggregates; Commercial Banks & their functions; Capital and Debt Markets. Monetary and Fiscal Policy Tools & their impact on the economy – Inflation and Phillips Curve. (11 Lectures)
Module III	Elements of Business/Managerial Economics and forms of organizations. Cost & Cost Control –Techniques, Types of Costs, Budgets, Break even Analysis, Capital Budgeting. Application of Linear Programming. Investment Analysis – NPV, ROI, IRR, Payback Period, Depreciation, Time value of money. Business Forecasting – Elementary techniques. Statements – Cash flow, Financial. Case Study Method. (<i>11 Lectures</i>)
Module IV	Indian economy Brief overview of post-independence period – plans. Post reform Growth, Structure of productive activity. Issues of Inclusion – Sectors, States/Regions, Groups of people (M/F), Urbanization. Employment–Informal, Organized, Unorganized, Public, Private. Challenges and Policy Debates in Monetary, Fiscal, Social, External sectors. (11 Lectures)
Text Books:	
1.	Mankiw Gregory N.(2002), Principles of Economics, Thompson Asia
2.	V. Mote, S. Paul, G. Gupta(2004), Managerial Economics, Tata McGraw Hill
3.	Misra, S.K. and Puri (2009), Indian Economy, Himalaya

4.	Pareek S	aroj (2003), Textbook of Business Economics, Sunrise Publisher
Programme Na	me	B. Tech. (Electronics Engineering), SEMESTER - IV
Course Code		MA2013S
Course Title		MATHEMATICS FOR ELECTRICAL ENGINEERS - II

After completion of this course, students should be able to

- Perform operations on matrices including transformation and reduce to Canonical form.
- Solve problem on vectors using different theorems.
- Understand Bessel function and solve problems on Legendre polynomials.
- Apply properties of Z transform and it's inverse to solve Engineering Problems.

Module I	Matrices
	1.1 Eigen values Eigen vectors of square matrix.
	1.2 Cayley Hamilton's theorem and function of square matrix.
	1.3 Similarity Matrices, Modal Matrix
	1.4 Function of Square a Matrix, Minimal Polynomial and Minimal
	Equation of a Matrix, Derogatory and Non-Derogatory Matrices.
	1.5 Quadratic forms : Linear Transformation , Linear Transformation of
	Quadratic forms, Congruence of a square Matrix
	1.6 Reduction to Canonical form under Congruent and Orthogonal
	Transformation of Quadratic form, rank, index, signature and class
	value of Quadratic form.
Module II	Vector Calculus and Analysis
	2.1 Scalar and vector point functions, Directional derivative, Curl and
	Divergence, Conservative, Irrotational and Solenoid field.
	2.2 Line integral, Green's theorem for plane regions and Properties of
	Line integral.
	2.3 Stoke's theorem, Gauss's divergence theorem (without proof) related
	identities and deductions.
Module III	Bessel Functions
	3.1 Bessel's Equation, Solution's of Bessel's function, Bessel's Function
	of Jn(x).
	3.2 Recurrence formula Jn(x), Equation Reducible to Bessel's equation
	3.3 Orthogonality of Bessel's functions, A Generating function for $Jn(x)$,
	3.4 Trigonometric Expansion involving Bessel's functions,
	3.5 Bessel's Integral, Legendre's Equation, Legendre's Polynomial,
	General solution of Legendre's Equation, Rodrigue's Formula, A
	Generating function of Legendre polynomial, Orthogonality of
	Legendre polynomial.

	3.6 Recurrence formula for pn(x).	
Module IV	Z Transform	
	 4.1 Z-Transform, Properties of z-transform, Theorem, change of Scale, Shifting property. 4.2 Inverse Z-Transform solution of Difference Equation, Multiplication by k, Division by k, Initial value, Final value, Partial sum. 4.3 Convolution, Convolution property of Casual Sequence, Transform Important Sequence. 4.4 Inverse of Z-transform by Division, By Binomial Expansion and partial fraction, Partial fraction. 4.5 Inversion by residue method, Solution of Difference Equation. 	
Text Books:		
1.	Advanced Engineering Mathematics. H. K. Dass S. Chand & Co. Ltd- 3rd Edition	
2.	Advanced Engineering Mathematics. Erwin Kreyszig, 9th edition	
3.	A Text Book of Engineering Mathematics. N.P. Bali & Dr. Manish Goyal, Laxmi Publication, Eight Edition	
Reference Boo	ooks:	
1.	Higher Engineering Mathematics, B. V. Ramana, McGraw Hill Education Publication, Delhi	
2.	Engineering Mathematics- T. Veerarrajan Tata McGraw-Hill- IInd Edition	
3.	Engineering Mathematics, Babu Ram, Pearson, 1st Edition.	
4.	Engineering Mathematics, Srimanta Pal & Subodh C.Bhunia, OXFORD University Press.	

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2011S
Course Title	SIGNALS AND SYSTEMS

After completion of this course, students should be able to

- Understand basic concepts of linear systems and how they interact with continuous-time and discrete time signals.
- Understand Z-domain descriptions of signals and systems, for use in solving difference equations.
- Design a sampling and reconstruction system to meet specific requirements
- Analyse continuous-time and discrete time signals and systems.

Module I	Introduction to signals & Systems (CT and DT domain)	
	Definition of Signal, Signal classification, Signal manipulations,	
	Periodicity in CT (Continuous Time) & DT(Discrete Time) domain,	
	Concept of a system, System representations & classification, Concept of	
	Impulse Response, Convolution in CT and DT domain	
Module II	Fourier Series & Fourier Transform (CTFS, CTFT, DTFS & DTFT)	
	Concept, properties and uses, Amplitude & phase spectra, Energy	
	Spectral Density, Power Spectral Density	
Module III	Laplace Transforms	
	Definition & properties of Two-sided & one-sided Laplace Transform,	
	Region of Convergence (ROC), System transfer function, Relationship	
	with Fourier Transform & mapping, Zero state & zero input responses	
Module IV	Z Transform	
	Definition & properties of Two-sided & one-sided Z Transform, Region	
	of Convergence (ROC), Relationship with Fourier and Laplace	
	of Convergence (ROC), Relationship with Fourier and Laplace Transform, & mapping, Inverse Z Transform	
Module V	of Convergence (ROC), Relationship with Fourier and Laplace Transform, & mapping, Inverse Z Transform Introduction to CT Systems	
Module V	of Convergence (ROC), Relationship with Fourier and Laplace Transform, & mapping, Inverse Z Transform	
	of Convergence (ROC), Relationship with Fourier and Laplace Transform, & mapping, Inverse Z Transform Introduction to CT Systems System Transfer function & Impulse response, Differential Equations	
Module V Module VI	of Convergence (ROC), Relationship with Fourier and Laplace Transform, & mapping, Inverse Z Transform Introduction to CT Systems System Transfer function & Impulse response, Differential Equations Introduction to DT Systems	
	of Convergence (ROC), Relationship with Fourier and Laplace Transform , & mapping, Inverse Z Transform Introduction to CT Systems System Transfer function & Impulse response, Differential Equations Introduction to DT Systems Difference equation, FIR & IIR systems, System transfer function,	
	of Convergence (ROC), Relationship with Fourier and Laplace Transform , & mapping, Inverse Z Transform Introduction to CT Systems System Transfer function & Impulse response, Differential Equations Introduction to DT Systems Difference equation, FIR & IIR systems, System transfer function, System realization: Direct forms, Cascade & parallel forms, Linear and	
	of Convergence (ROC), Relationship with Fourier and Laplace Transform , & mapping, Inverse Z Transform Introduction to CT Systems System Transfer function & Impulse response, Differential Equations Introduction to DT Systems Difference equation, FIR & IIR systems, System transfer function,	

Module VII	Time Domain Analysis of DT Systems
	System Transfer function & Impulse response, Difference equation,
	Solution of a difference equation, zero input & zero state response
	calculations
Text Books:	
1.	S. Haykin, Signals and Systems, Wiley Eastern Publication
2.	J.G. Proakis, D. G. Manolakis, Digital Signal Processing: Principles,
Ζ.	Algorithms and applications, Prentice Hall of India.
2	Ashok Ambardar, Analog and Digital Signal Processing, Thomson
3.	Learning, second edition
4	Oppenheim and Schafer with Buck, Discrete- Time Signal Processing,
4.	Prentice Hall of India

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2013T
Course Title	Digital Sequential Circuits

After completion of this course, students should be able to

- Classify and analyse different types of sequential circuits.
- Analyse and design flip-flop based digital applications
- Comprehend, analyse and design FSMs
- Do hardware description of synchronous sequential circuits in VHDL and describe different VHDL constructs
- Describe architectures of different programmable logic devices such as (FPGA and CPLD) and structure of different types of memories and use them in digital design.

Module I	Introduction
	Introduction to sequential circuits, Types: synchronous and asynchronous sequential logic circuits, Comparison between sequential and combinational circuits
Module II	Sequential Logic systems
	Definition of state machines, state machine as a sequential controller; Basic sequential circuits- latches and flip-flops: SR-latch, D-latch, D flip- flop, JK flip-flop, T flip-flop; Timing hazards and races; Analysis of state machines using D flip-flops and JK flip-flops; Design of state machines - state table, state assignment, transition/excitation table, excitation maps and equations, logic realization; Design examples
Module III	State machine design approach
	Design of state machines - state table, state assignment, transition/excitation table, excitation maps and equations, logic realization; Designing state machine using ASM charts; Designing state machine using state diagram; Design examples
Module IV	Sequential logic modules and their applications
	Multi-bit latches and registers, counters, shift register, application examples.
Module V	Memory Devices & Programmable Logic Devices
	Read-only memory, read/write memory - SRAM and DRAM PLAs,
	PALs and their applications; Sequential PLDs and their applications; State-machine design with sequential PLDs; Introduction to field

	programmable gate arrays (FPGAs)
Text Books:	
1	John F. Wakerley, Digital Design Principles and Practices, fourth edition,
1.	Pearson Education India, 2008.
2	Stephen Brown & Zvonko Vranesic, Fundamentals of Digital logic with
2.	VHDL design, first edition, McGraw Hill International edition, 2000.
2	Moris& Miller (Eds), Designing with TTL Integrated Circuits: Prepared
3.	by Staff of Texas Instruments, McGraw Hill International edition, 1981

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2013P
Course Title	Digital Sequential Circuits LAB

After completion of this course, students should be able to

- Implement digital sequential circuits using ICs.
- Describe digital sequential circuits in any hardware description language.
- Program an FPGA or CPLD

LIST OF EXPERIMENTS

1) Truth Table verification of

i) RS Flip Flop

- ii) T type Flip Flop.
- iii) D type Flip Flop.
- iv) JK Flip Flop.

v) JK Master Slave Flip Flop. To simplify the given expression and to realize it using Basic gates and Universal gates

- 2) To realize and study of Shift Register.
 - i) SISO (Serial in Serial out)
 - ii) SIPO (Serial in Parallel out)
 - iii) PIPO (Parallel in Parallel out)

iv) PISO (Parallel in Serial out) To design and set up the following circuit using IC 7483.

- 3) Design and set up a Sequence Generator using IC 7495.
- 4) To realize and study Ring Counter and Johnson counter.
- 5) To design and test 3-bit binary asynchronous counter using flip-flop IC 7476 for the given sequence.
- 6) To design and test 3-bit binary synchronous counter using flip-flop IC 7476 for the given sequence.
- 7) To design IC 74193 as a up/down counter.

8) To design IC 7490 as a decade counter with BCD count sequence.

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2012T
Course Title	ELECTRONICS CIRCUITS ANALYSIS AND DESIGN – II

COURSE OUTCOMES

After completion of this course, students should be able to

- Compute and characterise the frequency response of BJT and FET
- Design and analyse various types of power amplifiers
- Design and analyse various types of differential and multistage amplifiers
- Design and analyse various types of feedback amplifiers

Module I	Frequency Response of Amplifiers
	Amplifier Frequency Response, System Transfer Functions, S – Domain
	Analysis, First – Order Functions, Bode Plots, Short-Circuit and Open-
	Circuit Time Constants, Frequency Response: Transistor Amplifiers with
	Circuit Capacitors, Frequency Response: Bipolar Transistor, Frequency
	Response: The FET, High Frequency Response of Transistor Circuits.
	Sinusoidal Oscillators: The phase shift Oscillator, The Wien Bridge
	Oscillator, The Tuned Circuit Oscillator, The Colpitts Oscillator and
	Hartley Oscillator.
Module II	Output Stage and Power Amplifiers
	Power Amplifiers, Power Transistors – Power BJTs, Power MOSFETs,
	Heat Sinks, design of heat sinks, Classes Of Amplifiers - Class-A
	Operation, Class–B Operation, Class–AB Operation, Class–C Operation,
	Class-A Power Amplifiers, Class-AB Push Pull Complementary Output
	Stages.
Module III	Differential and Multistage Amplifiers
	The Differential Amplifier, Basic BJT Differential Pair, Basic FET
	Differential Pair, Differential Amplifier with Active Load, BICMOS
	Circuits, Gain Stage and Simple Output Stage, Simplified BJT
	Operational Amplifier Circuit, Differential Amplifier Frequency
	Response. The Darlington Amplifier and Cascade Amplifier.
Module IV	Feedback and Stability
	Introduction to Feed Back, Basic Feedback Concepts, Ideal Close–Loop
	Gain, Gain Sensitivity Bandwidth Extension, Noise Sensitivity,
	Reduction of Nonlinear Distortion, Ideal Feedback Topologies, Series-
	Shunt, Shunt–Series, Series–Series, Shunt–Shunt Configurations, Voltage
	(Series – Shunt) Amplifians Current (Shunt – Series) Amplifians Trans Conductores
	Amplifiers, Current (Shunt - Series) Amplifiers, Trans Conductance

	(Series – Series) Amplifiers, Trans Resistance (Shunt – Shunt) Amplifiers, Loop Gain, Stability of The Feedback Circuit, The Stability Problem, Bode Plots: One – Pole, Two – Pole, and Three – Pole Amplifiers, Nyquist Stability Criterion, Phase and Gain Margins, Frequency Compensation Basic Theory, Closed Loop Frequency Response, Miller Compensation.	
Text Books:		
1.	Donald A. Naeman, Electronic Circuit Analysis and Design, Second Edition, McGraw Hill International Edition 2001.	
2.	Martin Roden, Gordon Carpenter, William Wieserman, Electronic Design, Fourth edition, Shroff Publishers, 2002.	
Reference Boo	Reference Books :	
1.	Donald Schilling and Charles Belove, Electronic Circuits Discrete and Integrated, Third edition, McGraw Hill International Edition, 1989	
2.	Adel Sedra and, Kenneth Smith, Microelectronic Circuits, Fourth edition, Oxford University Press, 1998.	

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2012P
Course Title	ELECTRONICS CIRCUITS ANALYSIS AND DESIGN – II
	LAB

After completion of this course, students should be able to

- Differentiate the response of BJT and MOSFET at low frequency and RF frequency using modelling.
- Get familiarized with various RF devices, PLLs,
- Get familiarized with various RF synthesizer architectures and frequency dividers.

- 1. Design of Voltage Shunt Feedback Amplifier.
- 2. Frequency Response of CE Amplifier with and Without Feedback.
- 3. Design of Current Shunt Feedback Amplifier.
- 4. Design of RC Phase Shift Oscillator.
- 5. Design of Radio Frequency Oscillators (Hartley and Colpitt's Oscillators).
- 6. Frequency Response of Two stage RC Coupled Amplifier.
- 7. Design of Voltage Shunt Feedback Amplifier.
- 8. Frequency Response of CE Amplifier with and Without Feedback.
- 9. Measurement of Parameters of Common Emitter Amplifier.
- 10. Design of RC Phase Shift Oscillator.
- 11. Design of Wien Bridge Oscillator.
- 12. Design of Hartley and Colpitt's Oscillator.

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2014T
Course Title	MEASUREMENTS AND INSTRUMENTATION

After completion of this course, students should be able to

- Describe the working principle of various test and measurement equipment.
- Describe the working principle of various signal generators and analysers.
- Describe the working principle of various digital measurement equipment's.
- Describe various data acquisition techniques and fiber optic based measurements.

Module I	Basic Measurement Concepts	
	Measurement systems – Static and dynamic characteristics – units and standards of measurements – error :-accuracy and precision, types,	
	statistical analysis – moving coil, moving iron meters – multimeters –	
	Bridge measurements : - Maxwell, Hay, Schering, Anderson and Wien	
	bridge.	
Madada II	De sie Electronie Messeren este	
Module II	Basic Electronic Measurements	
	Electronic multimeters – Cathode ray oscilloscopes – block schematic –	
	applications – special oscilloscopes :- delayed time base oscilloscopes,	
	analog and digital storage oscilloscope, sampling oscilloscope – Q meters	
	- Vector meters - RF voltage and power measurements - True RMS	
	meters.	
Module III	Signal Generators And Analysers	
	Function generators – pulse and square wave generators, RF signal	
	generators – Sweep generators – Frequency synthesizer – wave analyzer	
	– Harmonic distortion analyzer – spectrum analyzer :- digital spectrum	
	analyzer, Vector Network Analyzer –Digital L,C,R measurements,	
	Digital RLC meters.	
Module IV	Digital Instruments	
	Comparison of analog and digital techniques – digital voltmeter –	
	multimeters – frequency counters – measurement of frequency and time	
	interval – extension of frequency range – Automation in digital	
	instruments, Automatic polarity indication, automatic ranging, automatic	
	zeroing, fully automatic digital instruments, Computer controlled test	
	systems, Virtual instruments	

Module V	Data Acquisition Systems And Fiber Optic Measurements
	Elements of a digital data acquisition system – interfacing of transducers – multiplexing – data loggers – computer controlled instrumentation –
	IEEE 488 bus – fiber optic measurements for power and system loss – optical time domain reflectometer.
Text Books:	
1.	Albert D.Helfrick and William D.Cooper – Modern Electronic Instrumentation and Measurement Techniques, Pearson / Prentice Hall of
2.	India, 2007. Ernest O. Doebelin, Measurement Systems- Application and Design, TMH, 2007.
3.	Joseph J.Carr, Elements of Electronics Instrumentation and Measurement, Pearson Education, 2003.
4.	Alan. S. Morris, Principles of Measurements and Instrumentation, 2nd Edition, Prentice Hall of India, 2003.
5.	David A. Bell, Electronic Instrumentation and measurements, Prentice Hall of India Pvt Ltd, 2003.

Programme Name	B. Tech. (Electronics Engineering), SEMESTER - IV
Course Code	EC2014P
Course Title	MEASUREMENTS AND INSTRUMENTATION LAB

After completion of this course, students should be able to

- Handle and use various instruments and calibrate them for proper measurements.
- Extend voltmeter and ammeter.
- Simulate simple measurement systems.

- 1. Extension of Voltmeter
- 2. Extension of Ammeter
- 3. Analysis of a wave using spectrum analyser
- 4. Measurement using RLCQ meter
- 5. Simulation of any simple measurement system using lab view
- 6. Measurement of unknown resistance using maxwells bridge
- 7. Measurement of unknown resistance using weins series and parallel bridge
- 8. To generate various signals using arbitrary waveform generator

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2015T
Course Title	MICROPROCESSOR AND MICROCONTROLLER

After completion of this course, students should be able to

- Describe architecture of a typical microprocessor and microcontroller.
- Design a microprocessor system consisting of a microprocessor / microcontroller, memory, I/ O and other relevant devices.
- Design and implement assembly language programs for 8085 / 8051 microprocessor / microcontroller.
- Design and implement I/O data transfer techniques

Module I	Introduction	
	Introduction to Microprocessors, Microcontrollers and Assembly Language.	
Module II	8085 Microprocessor Architecture and Memory Interfacing	
	The 8085 architecture, Instruction cycles, machine cycles and T states.	
	Concept of wait states. Memory interfacing with timing considerations.	
	Clock, Reset and buffering circuits.	
Module III	8085 Assembly Language Programming	
	The 8085 programming model, Instruction classification, Instruction and	
	Data format, process of writing, assembly and execution of simple	
	assembly language programs.	
Madula IV	Due encoursing The basis of the	
Module IV	Programming TechniquesData transfer operations, Arithmetic & Logic operations, Branch	
	operations, Writing assembly language programs, Debugging a program.	
	Looping, Counting and indexing, counters and timers, Code conversion,	
	BCD arithmetic and 16 bit data operations. Software Development	
	Systems and Assemblers. Concept of Stack and subroutines, parameter	
	passing techniques, Re-entrant and recursive subroutines.	
Module V	Parallel I/O Data Transfer Techniques	
	Basic interfacing concepts, Interfacing input and output devices with	
	examples, Memory mapped I/O and I/O mapped I/O. I/O data transfer	
	classification, Programmed I/O, Interrupt driven program controlled I/O,	
	Interrupt Requirements, Single level interrupt, Multi-level interrupt,	
	Vectored interrupt. 8085 interrupt structure and operation. 8259A	
	programmable interrupt controller features and operation - single and	

	cascaded. Hardware I/O (Direct Memory Access).	
Module VI	Intel MCS 51 family	
	Introduction to Single chip microcontrollers of Intel MCS 51 family. Architectural and operational features. Instruction set. CPU timing and machine cycles. Interrupt structure and priorities. Internal Timer / counters, serial interface. Interfacing of external memory. Power saving modes.8051 variants. 89C51 devices	
Text Books:		
1.	Ramesh S Gaonkar, Microprocessor Architecture, Programming and Applications with the 8085, Sixth edition, Penram International Publishing (India), 2013.	
2.	Kenneth Short, Microprocessors and Programmed Logic, second edition, Prentice Hall of India, 1987.	
3.	Kenneth Ayala, The 8051 Microcontroller & Embedded Systems Using Assembly and C, Cengage Learning, first edition, 2010	
4.	Muhammad A Mazidi, The 8051 Microcontroller and Embedded Systems: Using Assembly and C, second edition, 2008	

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	EC2015P
Course Title	MICROPROCESSOR AND MICROCONTROLLER LAB

After completion of this course, students should be able to

- Understand and use microprocessor circuits and kits.
- Design and implement assembly language programs for 8085 / 8051 microprocessor / microcontroller.
- Design and program parallel data transfer techniques

LIST OF EXPERIMENTS

1. Any five programs on Data transfer operations, Arithmetic & Logic operations

2. Any three programs on parallel data transfer techniques including usage of interrupts

Programme Name	B. Tech. (Electronics Engineering), SEMESTER – IV
Course Code	HM2001L
Course Title	PRESENTATION AND COMMUNICATION SKILLS

After completion of this course, students should be able to

- Speak with confidence, being aware of the various aspects of professional speaking
- Get an understanding of the communication requirements of placement procedures and develop necessary skills for the enhancement of the same
- Get trained in the technical writing skills and write professional documents like emails, reports, proposal and research papers
- Work in teams and make professional presentations
- Develop a bank of professional vocabulary
- Demonstrate knowledge of professional ethics

Module I	 Basics of Business Communication a. Concept and meaning of communication b. Verbal and non-verbal communication c. barriers to the process of communication d. Channels of communication e. Role of communication in the age of information technology
Module II	Professional grooming and etiquette; cross-cultural communication
Module III	 Grammar, vocabulary and summarization techniques a. Common errors b. Use of articles, prepositions, subject - verb agreement c. Punctuation and capitalization d. Technical vocabulary: business idioms, phrasal verbs e. Summarization
Module IV	Speaking a. Intonation b. Modulation c. Basics of public speaking d. Gaining confidence
Module V	Presentation Skills a. Public speaking b. Oral presentation c. Graphic presentation

	Career Oriented Communication
Module VI	a. Resume, Language and format of job application
	b. Job Interviews
	i. Purpose and process
	ii. How to prepare for interviews
	iii. Language and style to be used in interview
	iv. Types of interview questions and how to answer them
	c. Group Discussion: structure, dynamics and techniques of
	effective participation
	1 1
Module VII	Technical Writing
	a. Technical writing process
	b. Style and organization in technical writing
	c. objectivity, clarity, precision as defining features of technical
	communication
	d. Language and format of various types of business letters, reports;
	proposals, e-mails, minutes of meeting, research paper
Module VIII	Language Laboratory
	a. Listening and comprehension skills
	b. Reading Skills
	c. Sound Structure of English
	d. Intonation patterns
Text Books:	
1.	Business Communication by Hory Shankar Mukharjee, OUP
2.	Effective Technical Communication by Asharaf Rizvi, The McGraw Hill
3.	Business Communication by Meenakshi Raman, Prakash Singh, OUP
Reference Books:	
1.	Basic Managerial Skills for All by E.H. McGrath, PHI Learning Pvt Ltd
2.	Professional Ethics by R. Subramanian, OUP
3.	https://learnenglish.britishcouncil.org/en/english-grammar