VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE (VJTI) MATUNGA, MUMBAI 400 019 (Autonomous Institute affiliated to University of Mumbai)

Curriculum (Scheme of Instruction & Evaluation and Course contents) For Post Graduate Programme Leading to

> Masters of Engineering Degree in Computer Engineering (Specialization in Software Engineering)

Department of Computer Engineering and Information Technology,

Implemented from the batch admitted in Academic Year 2022-23 $\,$

2023

M Tech Computer Engineering Programme Outcomes

	LIST OF PROGRAM OUTCOMES
PO1	An ability to independently carry out research /investigation and development
	work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the field of
	computer engineering and specialized topics in various domains of computer
	engineering.
PO4	An ability to apply mathematical modeling, algorithms and techniques in re-
	spective areas of computer engineering to solve complex engineering problems.
PO5	An ability to design and develop robust, reliable, scalable tools and techniques
	for knowledge-based systems to enhance lifelong learning.

MTech Computer Engineering (Specialization in Software Engineering) Scheme of Instruction and Evaluation SEMESTER I

	Scheme of Instruction					Scheme	e of Eva	luation
S.No	Course Code	Course Title	L-T-P	Credits	TA	IST	ESE	ESE hours
1	COSE5001S	Computational Methods (PSM)	3-0-0	3	20	20	60	3
2	COSE5011T	Advanced Algorithms (Core-1)	3-1-0	4	20	20	60	3
3	COSE5012S	Software Engineering (Core-2)	3-0-0	3	20	20	60	3
4	COSE502XT	Program Elective -1	3-1-0	4	20	20	60	3
5	COSE503XS	Program Elective - 2	3-0-0	3	20	20	60	3
6	COSE506XT	Open Elective - 1	3-1-0	4	20	20	60	3
7	COSE5071L	Software Engineering (Laboratory - 1)	0-0-2	1	60%	CIE	40	-
8	COSE5071L	Cloud Computing (Laboratory - 2)	0-0-2	1	60%	GCIE	40	-
9	COSE5071L	Cross Platform App Development (Laboratory -3)	0-0-2	1	60%	GCIE	40	-
10	MTEC081L	Liberal Learning-1	0-0-2	1	60%	GCIE	40	-
			28	24				

	Prog	ram Elective -1		Progr	am Elective - 2
S.No	Course Code	Course Title	S.No	Course Code	Course Title
1.	COSE5021T	Cloud Computing	1.	COSE5031S	Computer Network
2.	COSE5022T	Distributed Systems	2.	COSE5032S	Internet of Things
3.	COSE5023T	Computer Systems Perfor-	3.	COSE5033S	GPU Architecture and pro-
		mance Analysis			gramming
4.	COSE5024T	Social Network Analysis	4.	COSE5034S	Graph Mining
5.	COSE5025T	Statistical Foundations of Data	5.	COSE5035S	Algorithms for Data Science
		Science			

	Open Elective - 1					
S.No	Course Code	Course Title				
1.	COSE5061T	Database Management Systems				

MTech Computer Engineering (Specialization in Software Engineering) Scheme of Instruction and Evaluation SEMESTER II

		Scheme of Instruction				Schem	e of Eva	luation
S.No	Course Code	Course Title	L-T-P	Credits	TA	IST	ESE	ESE hours
1	COSE5002S	Research Methodology and IPR	3-0-0	3	20	20	60	3
		(Mandatory Learning)						
2	COSE5013T	Software Architecture (Core-3)	3-1-0	4	20	20	60	3
3	COSE5014S	Software Project Management	3-0-0	3	20	20	60	3
		(Core-4)						
4	COSE504XT	Program Elective -3	3-1-0	4	20	20	60	3
5	COSE505XS	Program Elective - 4	3-0-0	3	20	20	60	3
6	COSE506XT	Open Elective - 2	3-1-0	4	20	20	60	3
7	COSE5074L	Software Architecture	0-0-2	1	60%	CIE	40	-
		(Laboratory-4)						
8	COSE5075L	DevOps (Laboratory-5)	0-0-2	1	60%	6CIE	40	-
9	COSE5076L	Big Data Analytics (Laboratory -	0-0-2	1	60%	ÓCIE	40	-
		6)						
10	MTECO082L	Liberal Learning-2	0-0-2	1	60%	CIE	40	-
			28	24				

Program Elective -1				Progr	am Elective - 2
S.No	Course Code	Course Title	S.No	Course Code	Course Title
1.	COSE5021T	Network administration	1.	COSE5031S	Network Security
2.	COSE5022T	Wireless Communication	2.	COSE5032S	Blockchain Technology
3.	COSE5023T	Big Data Analytics	3.	COSE5033S	Information Retrieval

	Open Elective - 2					
S.No	Course Code	Course Title				
1.	COSE5065T	Human Computer Interaction				
2.	COSE5066T	Machine Learning				

MTech Computer Engineering (Specialization in Software Engineering) Scheme of Instruction and Evaluation SEMESTER III

		Scheme of Instruction			Scheme of Evaluation
S.No	Course Code	Course Title	L-T-P	Credits	
1	COSE5091D	Skill Based Course (Project Stage		5	100%CIE
		-I)			
2	COSE5092D	Skill Based Course (Project Stage		5	100%CIE
		-II)			
3	COSE5101S	Self-Learning Course -1		1	100% ESE of 3 hours or
					credit transfer
4	COSE5201S	Self-Learning Course -2		1	100% ESE of 3 hours or
					credit transfer
5	COSE5201MNC	Mandatory Non-Credit Course		0	100% ESE of 3 hours or
					credit transfer
				12	

Scheme of Instruction and Evaluation SEMESTER IV

		Scheme of Evaluation			
S.No	Course Code	Course Title	L-T-P	Credits	
1	COSE5093D	Skill Based Course (Project Stage		5	100%CIE
		-III)			
2	COSE5093D	Skill Based Course (Project Stage	_	7	100%CIE
		-IV)			
				12	

Programme Name	M. Tech. Computer Engineering				
Course Code	COSE5001S				
Course Title	Computational Methods				
Course Type	Program Specific Mathematics				
Prerequisites: Fu	ndamental of computer science, discrete mathematics and proba-				
bility theory and st	atistics.				
Course Outcomes: At the end of the course student will be able to:					
CO1. Analyze mathematical models and methods using proofs.					
CO2. Apply number theory principles for real world problems.					
CO3. Demonstrate counting usage in computer applications.					
CO4. Illustrate probability principles for addressing randomness in the applications.					
CO5. Practice recurrence in real life problems.					
CO6. Design advar	nced graph theoretic algorithms.				

	Course Contents	Hrs.	CO
1.	Introduction to proofs: Propositions, Predicates, Axiomatic	8	CO1
	Method, Proof by Cases, Proof by Contradiction, Well Ordering		
	Proofs, Propositional Logic, Equivalence and Validity, Algebra of		
	Propositions, Proof by Induction		
2.	Number Theory: Divisibility, Modular Arithmetic, Multiplica-	6	CO2
	tive Inverses, Euler's Theorem, RSA Public Key Encryption		
3.	Counting: Sums and Asymptotics, Counting Sequences, Count-	6	CO3
	ing Subsets, Pigeonhole Principle, Inclusion-Exclusion, Combina-		
	torial Proofs, Generating Functions		
4.	Probability: Events and Probability Spaces, Conditional Prob-	8	CO4
	ability, Random Variables, Random Walks		
5.	Recurrences: Linear Recurrences, Divide-and-Conquer Recur-	6	CO5
	rences		
6.	Directed graphs and Partial Orders: Vertex Degrees, Walks	6	CO6
	and Paths, Directed Acyclic Graphs and Scheduling, Partial Or-		
	ders, Equivalence Relations		

Te	Text Books				
1.	Kolman, Bernard, Robert C. Busby, and Sharon Ross. Discrete mathematical				
	structures. Prentice-Hall, Inc., 1995.				
2.	Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.				
	Introduction to algorithms. MIT press, 2022.				
	ference Books				
1.	Lehman, Eric, Tom Leighton, and Albert R. Meyer. Mathematics for computer science. Technical report, 2006. Lecture notes, 2010.				
	science. Technical report, 2006. Lecture notes, 2010.				

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5011T	
Course Title	Advanced Algorithms	
Course Type	Core Subject	
Prerequisites: Fu	ndamental of computer science, discrete mathematics and proba-	
bility theory and statistics.		
Course Outcomes: At the end of the course student will be able to:		
CO1. Analyze algorithms and determine efficiency of algorithm.		
CO2. Design analysis algorithms using the greedy, dynamic programming, and divide		
and conquer techniques.		
CO3. Design and build solutions for a real world problem using graphs.		
CO4. Prove problems of P, NP, or NP-Complete.		

CO4. Prove problems of P, NP, or NP-Complete.CO5. Demonstrate geometric algorithms usage in real life problems.CO6. Illustrate advanced algorithms techniques for NP Complete problems.

	Course Contents	Hrs.	CO
1.	Introduction: Asymptotic notation, recurrences, amortized	6	CO1
	analysis		
2.	Algorithm design techniques: Greedy algorithms, divide-and-	8	CO2
	conquer algorithms, dynamic programming		
3.	Graph algorithms: Traversal, topological sort, minimum span-	8	CO3
	ning trees, shortest path, biconnected components, strongly con-		
	nected components in directed graphs, network flow		
4.	NP-completeness: Classes P, NP and space complexity, reduc-	6	CO4
	tion, NP-completeness, examples of NP-complete problems		
5.	Geometric algorithms: Convex hulls, sweep paradigm, Voronoi	6	CO5
	diagrams, closest pair, nearest neighbour search.		
6.	Approximation Algorithms: Approximation algorithms for	6	CO6
	known NP complete problems		

Te	xt Books			
1.	Kleinberg, Jon, and Eva Tardos. Algorithm design. Pearson Education India,			
	2006.			
2.	Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 2022.			
	Introduction to algorithms. MIT press, 2022.			
Re	Reference Books			
1.	Aho, A., J. Hopcroft, and J. Ullman. "The Design and Analysis of Algorithms.			
	Addison and Wesley." Reading, MA (1974).			

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5012S	
Course Title	Software Engineering	
Course Type	Program Elective	
Prerequisites: Programming, basics of software engineering		

CO1. Illustrate software development process and best practice for software development.

CO2. Demonstrate agile development principles and techniques to manage agile software developments.

CO3. Investigate requirements to generate software requirement document.

 ${\bf CO4.}$ Apply component based design to real life applications.

CO5. Illustrate skills of software testing to projects.

CO6. Estimate cost of the project.

	Course Contents	Hrs.	CO
1.	Fundamentals of Software Engineering: software life-cycle	3	CO1
	process models, industry-standard software engineering tools.		
2.	Agile Methods for Software Development Method: Ex-	8	CO2
	treme Programming (XP), Scrum, Lean, Crystal, Dynamic Sys-		
	tems Development Method and Feature-Driven Development.		
3.	Software Requirements Analysis and Engineering: Identi-	6	CO3
	fication of stakeholders, the elicitation and verification of require-		
	ments from them, and translation into detailed requirements		
4.	Software Architecture and Component-Based Design:	8	CO4
	software design process and it's models; software architectures		
	and design plans; design methods; design state assessment; design		
	quality assurance; and design verification.		
5.	Software Testing and Quality Assurance: systematic test-	8	CO5
	ing of software systems, software verification, symbolic execution,		
	software debugging, quality assurance, measurement and predic-		
	tion of software reliability.		
6.	Cost Estimation and Measurement: industry-standard soft-	6	CO6
	ware sizing metrics as Function, Feature, and Object Points and		
	their relationship to the lines-of-code metric.		

Te	Text Books	
1.	Roger Pressman. Software Engineering: A Practitioner's Approach (7th. ed.).	
	McGraw-Hill, Inc., USA. 2009.	
Reference Books		
1.	Jalote, Pankaj. An integrated approach to software engineering. Springer Science	
	& Business Media, 2012.	
2.	Sommerville, Ian. Software Engineering, 9/E. Pearson Education India, 2011.	

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5061T	
Course Title	Database Management Systems	
Course Type	Open Elective	
Prerequisites: Nil		
Course Outcomes: At the end of the course student will be able to:		
CO1. Differentiate various database architectures.		
CO2. Design and implement relational databases.		
CO3. Execute MongoDB commands to manipulate data.		
CO4. Use advanced XML queries on database.		
CO5. Apply practices of implementing database security.		
CO6. Perform transaction processing and achieve concurrency control.		

	Course Contents	Hrs.	CO
1.	Introduction to Database Management Systems and En-	4	CO1
	hanced Data Models for Advanced Applications: Char-		
	acteristics of database, Database users, Advantages of DBMS,		
	Data Models, Schema and Instances, Three schema Architecture		
	and Data Independence, Database Languages and Interfaces, The		
	Database System Environment, Centralized and Client / Server		
	Architecture for DBMS. Introduction to Temporal Database and		
	Multimedia Databases.		
2.	Relational-Database Design and SQL: Functional dependen-	8	CO2
	cies, Normalisation forms, Decomposition, Overall database de-		
	sign process. SQL: DDL: Create, Modify, Alter, Drop, View def-		
	inition, etc.DML: SELECT, INSERT, DELETE, Update, Nested		
	Query, SQL with SET operations: Union, Intersect, Except, etc,		
	Aggregate Functions: Group By, Having, SUM, etc, SQL with		
	Logical operations, Nested and Complex Queries, Join Queries.		
	DCL : GRANT, REVOKE, etc DBA level query. Cursors and		
	Triggers, Procedures and Functions, Partitions, SQL Backup and		
	Recovery.		
3.	Introduction to NoSQL Databases: Introduction, Design of	8	CO3
	parallel systems, Parallel query processing. Avenues for paral-		
	lelism, Array and vector processors. Multiprocessor architecture:		
	taxonomy of parallel architectures, Parallel Query Evaluation.		
	Advanced Transaction Processing Non-relational DBMS: consis-		
	tency and availability trade-offs, NoSQL DBMS (key-value, doc-		
	ument, and graph), MongoDB: CRUD operations.	C	004
4.	XML Databases: Introduction to XML Documents and	6	CO4
E	Databases, XML schemas, tree structure, and DOM, XML Query.	4	CO5
5.	Database Security: Introduction to major database attacks:	4	005
	SQL Injection, DoS/DDoS etc. Encryption and Public Key In-		
	frastructures.		

6.	Transaction Processing and Concurrency Control: Sched-	8	CO6
	ules and serializability, Lock management, Compensation and		
	Databases, Deadlock Handling, Multiple granularity, validation		
	protocols, multi-version protocols, snap shot isolation, predicate		
	locking, Weak Levels of Consistency in Practice.		

Te	Text Books		
1.	Elmasri, Navathe. Fundamentals of Database Management systems, Pearson		
	Education, 2008.		
2.	Avi Silberschatz, Henry F. Korth, S. Sudarshan. Database System Concepts,		
	Seventh Edition, McGraw-Hill, 2010.		
3.	P. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging		
	World of Polyglot Persistence, Addison Wesley, 2012.		
Re	Reference Books		
1.	Thomas Connolly and Carolyn Begg, "Database Systems" 3rd Edition, Addison-		
	Wesley, 2005.		
2.	V.S. Subrahmanian, "Multimedia database systems", Springer, 1996.		

r		
Programme Name	M. Tech. Computer Engineering	
Course Code	MTEC081L	
Course Title	Indian Knowledge Systems	
Course Type	Liberal Learning	
Prerequisites: Nil.		
Course Outcomes: At the end of the course student will be able to:		
CO1. Understand Indic knowledge systems.		
CO2. Classify Indian vedas and puranas.		
CO3. Justify Indian Science.		

	Course Contents	Hrs.	CO
1.	Introduction: Introduction to Indic knowledge systems, Intro-	2	CO1
	duction to Sanskrit alphabet, root words, structure		
2.	Chaturdasha Vidyasthana: Introduction to Chaturdasha	4	CO2
	Vidyasthana – Overview, Veda, Vedangas, Shad Darshana, Smriti		
	Itihasa, Purana		
3.	Indian sciences: Overview, Mathematics, Astronomy, Engineer-	4	CO3
	ing, Metals and Mining, Medicine and Surgery, Psychology- mind		
	sciences, Town planning, Ship building, etc		
4.	Leadership: Leadership lessons from Mahabharata, Ramayana,	4	CO2
	Lessons from Ramayana, Importance and relevance of Mahab-		
	harata and Ramayana		
5.	Evolution of Indian education system: Overview of Indian	4	CO2,
	education system - Gurukul, Universities, Subjects		CO3
6.	Revision: Revision - open discussion - paper work, Revision -	2	CO1,
	wrap up - open discussion - paper work		CO2,
			CO3

Te	Text Books		
1.	Introduction to Indian knowledge Systems - Concepts and Applications		
2.	Mahabharata Unravelled: Lesser Known facets of a well-known history, Ami		
	Ganatra.		
Re	Reference Books		
1.	Educational Heritage of India, Sahana Singh.		
2.	A beautiful tree, Dharmapal.		

Programme Name	M. Tech. Computer Engineering		
Course Code	COSE5021T		
Course Title	Cloud Computing		
Course Type	Program Elective		
Prerequisites: Op	perating system		
Course Outcome	s: At the end of the course student will be able to:		
CO1. Describe clou	ud computing concepts, architecture, deployment model and other		
cloud terminologies	cloud terminologies		
CO2. Use various aspects of SLA, workout cloud economics.			
CO3. Apply security features of cloud.			
CO4. Distinguish various special purpose cloud.			

CO5. Use and Create private cloud.

CO6. Design solution using cloud services.

	Course Contents	Hrs.	CO
1.	Introduction: Cloud Computing – Overview, Cloud Computing	6	CO1
	- Introduction, Evolution of Cloud Computing, Cloud Computing		
	Architecture, Cloud Architecture - Deployment Models, , Virtual-		
	ization, XML Basics, Web Services, Service Oriented Architecture		
2.	Service Level Agreement (SLA): SLA – Tutorial (problems),	8	CO2
	Economics, Economics Tutorial (problems), Managing Data, In-		
	troduction to Map Reduce, Map Reduce – Tutorial (problem),		
	Resource Management in cloud		
3.	Openstack Cloud: Detail Study of openstack cloud, Deploy-	8	CO5
	ment/ implementation of Openstack cloud as private cloud, Open-		
	Stack Major Components, Architecture of Openstack, Openstack		
	Work Flow, Nova scheduler filtering, OpenStack Storage Concepts		
	Study of other services		
4.	Cloud Types: Broker for Cloud Marketplace, Fog Computing,	4	CO4
	Use Case Geospatial Cloud, Green Cloud, Sensor Cloud Comput-		
	ing, IoT Cloud		
5.	Cloud Security: Security - Basic Components, Security Attacks,	8	CO3
	Classes of Threats, Policies and Mechanisms, Goals of Security,		
	Trust and Assumptions, Types of Mechanisms, Assurance, Oper-		
	ational Issues, Passive and Active Attacks, Security Services.		
6.	Cloud Platforms study: Case study of public cloud like AWS,	6	CO6
	Microsoft Azure, Google cloud GCP, Study and use of various ser-		
	vices. Cloud Migration, Docker container, Serverless Computing,		
	Dew computing		

Text Books		
1.	Arshdeep Bahga , Vijay Madisetti, Cloud Computing: A Hands-On Approach.	
	Universities Press.	
Reference Books		
1.	Buyya, Rajkumar, Christian Vecchiola, and S. Thamarai Selvi. Mastering cloud	
	computing: foundations and applications programming. Newnes, 2013.	

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5022T	
Course Title	Distributed Systems	
Course Type	Program Elective	
Prerequisites: Operating Systems, Computer Networks.		
Course Outcomes: At the end of the course student will be able to:		
CO1 Illustrate fundamental concepts of distributed systems		

CO1. Illustrate fundamental concepts of distributed systems.

CO2. Demonstrate synchronization principles for real world problems in distributed systems.

CO3. Distinguish different middle-ware technologies in computer distributed applications.

 ${\bf CO4.}$ Examine shared data operations and replication in the distributed applications.

CO5. Inspect distributed systems with case studies.

CO6. Design advanced graph theoretic algorithms.

	Course Contents	Hrs.	CO
1.	Foundations: Examples of distributed systems, Architectural models, Network principles, Multi-cast communication, Network	9	CO1
	virtualization, Message passing interface (MPI), Request-reply protocols, Remote procedure call (RPC), Remote method invo-		
	cation (RMI), group communication, publish-subscribe systems, message queue systems, shared memory–based approaches.		
2.	Synchronization and Coordination of Distributed Sys-	8	CO2
	tems: Clocks, events and process states, Synchronizing physical		
	clocks, Logical time and logical clocks, Global states, Distributed		
	mutual exclusion, Elections, Coordination and agreement in group		
	communication, Consensus and related problems		<u> </u>
3.	Middle-ware Components: Distributed objects, CORBA, Dis-	6	CO3
	tributed components, Enterprise JavaBeans and Fractal, Web		
	services, Coordination of web services, Peer-to-peer middleware,		
4	Routing overlays, Overlay case studies: Pastry, Tapestry	0	004
4.	Distributed Shared Data: Distributed mutual exclusion, Elec-	9	CO4
	tions, Coordination and agreement in group communication, Consensus, Transactions, Nested transactions, Locks, Optimistic		
	concurrency control, Timestamp ordering, Flat and nested dis-		
	tributed transactions, Atomic commit protocols, Concurrency		
	control in distributed transactions, Distributed deadlocks, Trans-		
	action recovery, System model and the role of group communi-		
	cation, Fault-tolerant services, Case studies of highly available		
	services: The gossip architecture, Bayou and Coda, Transactions		
	with replicated data		

5.	Distributed Systems: Overview of security techniques, Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi, File service architecture, Case study: Sun Network File System, Case study: The Andrew File System, Name services and the Domain Name System, Directory services, Case study: The Global Name Service, Case study: The X.500 Directory Service	6	CO5
6.	Designing Distribute Systems: Introducing the case study: Google, Overall architecture and design philosophy, Underlying	3	CO6
	communication paradigms, Data storage and coordination services, Distributed computation services		

Te	Text Books		
1.	George Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed Systems		
	George Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed Systems Concepts and Design", 5th ed., Pearson Education, 2011.		
2.	Ghosh, Sukumar. Distributed systems: an algorithmic approach. Chapman and		
	Hall/CRC; 2nd edition 2014.		
Re	Reference Books		
1.	Van Steen, Maarten, and Andrew S. Tanenbaum. Distributed systems. Leiden,		
	The Netherlands: Maarten van Steen, 2017.		

Programme Name	M. Tech. Computer Engineering
Course Code	COSE5023T
Course Title	Computer Systems Performance Analysis
Course Type	Program Elective

Prerequisites: Operating Systems, Computer Networks, and Probability and Statistics.

Course Outcomes: At the end of the course student will be able to:

CO1. Evaluate the performance of the various computer systems and networks, mistakes commonly observed in performance evaluation projects and a proper methodology to avoid them.

CO2. Illustrate performance metrics and analyze them mathematically, analytically or through simulation.

CO3. Illustrate the application of probability functions and distributions for computer systems.

CO4. Design mathematical models using Queuing Networks models and use programming languages to simulate and evaluate the performance of various computer systems within or outside the network.

CO5. Evaluate the performance of network systems by using various queuing models. **CO6.** Analyze the performance evaluation of various protocols, algorithm in an network environment.

	Course Contents	Hrs.	CO
1.	Overview of Performance Evaluation: Introduction, com-	10	CO1
	mon mistakes and how to avoid them, selection of techniques and		
	metrics.		
2.	Measurement Techniques and Tools: Types of workloads,	10	CO2
	the art of workload selection, workload characterization and tech-		
	niques, monitors, program-execution monitors and accounting		
	logs, capacity planning and bench-marking, the art of data pre-		
	sentation.		
3.	Probability Theory and use for Evaluation: Introduction	6	CO3
	to probability refresher, conditional probability, total probabil-		
	ity, discrete and continuous random variables, common distribu-		
	tions, probability generating functions(pgf) and Laplace trans-		
	forms (lst), numerous examples from computer networking, Com-		
	monly used distributions.		
4.	Queuing Theory : Queuing models, little theorem application,	4	CO4
	stochastic processes, Markov chain formulation, discrete time and		
	continuous time markov chains (dtmc, ctmc), MMD, Operational		
	laws.		

5.	Queuing System Models and Application: Queuing system $m/m/1$, $m/m/1/k$, $m/m/s/$, $m/m/y$ queue analysis m-server case. Multidimensional markov chain application in circuit switching/g/1 queue, generalization of $m/g/1$ theory application to atm, embedding instants in the $m/g/1$ theory $m/g/1$ with geometrically distributed messages. chain embedded to cell transmission, message transmission completion. queue balance equation, finite buffer case, mean value analysis.	6	CO5
6.	Network Analysis: Local area Network analysis, standard com- ment based analysis, contention based protocols, demand assign- ment protocols, nodes in packet switches networks, performance analysis of data link layer, Network layer. Traffic control and con- gestion in ATM networks, TCP/IP Traffic control.	3	CO6

Te	Text Books	
1.	Raj Jain, "The Art of Computer Systems Performance Analysis: Techniques	
	for Experimental Design, Measurement, Simulation, and Modeling", Wiley-	
	Interscience, 1991.	
Re	Reference Books	
1.	K.S. Trivedi, "Probability and Statistics with Reliability, Queueing and Com-	
	puter Science Applications", John Wiley and Sons, 2001.	
2.	Ross, Sheldon M. Introduction to probability models. Academic press, 2014.	

Programme Name	M. Tech. Computer Engineering
Course Code	COSE5024T
Course Title	Social Network Analysis
Course Type	Program Elective
Prerequisites: An	alysis of Algorithm, Computer Networks, Data Mining.

CO1. Illustrate sociology and anthropology used the ideas of culture and cultural formation concepts of Social Network Analysis.

CO2. Demonstrate statistical properties for real world problems in Social Network Analysis.

 ${\bf CO3.}$ Distinguish different edge classification techniques and use in the application.

CO4. Examine shared data operations and replication in the distributed applications.

CO5. Inspect data mining in Social Network Analysis with case studies.

CO6. Design advanced graph theoretic algorithms.

	Course Contents	Hrs.	CO
1.	Foundations: Introduction to new science of networks; Networks examples; Sociometry, small groups, and communities; Cliques, roles, and matrices; Space and distance; Dynamics and social change	6	CO1
2.	Statistical Properties of Social Network: Graph concepts and properties; static and dynamic properties of social graphs; RandomWalk based Proximity Measures; other proximity mea- sures; Graph-theoretic Measures for Semi-supervised Learning; Algorithms for computing the proximity measures; Applications using random walks approach.	8	CO2
3.	Community Discovery in Social Networks: Defining com- munities; Core Methods: Quality Functions, Kernighan-Lin(KL) algorithm, Agglomerative/Divisive Algorithms, Spectral Algo- rithms, Multi-level Graph Partitioning, Markov Clustering; Com- munity Discovery in Dynamic Networks, Heterogeneous Networks, Directed Networks.	6	CO3
4.	Node Classification in Social Networks: The Node Classification Problem; Problem Formulation; Local Classifiers, Random Walk based classifier, Node Classification to Large Social Networks, Basic Methods, Second-order Methods, Map-Reduce, Dissimilarity in Labels, Edge Labeling, Label Summarization.	6	CO4
5.	Data Mining in Social Media: Data Representation, Event Maps, Social Networking Sites: Illustrative Examples, Blogosphere: Illustrative Examples.	6	CO5
6.	Visualizing Social Network: Visual Images, MDS and SVD to explore data, Exploratory Research, Validating a Model, Struc- tural Visualization, Semantic and Temporal Visualization, Statis- tical Visualization	6	CO6

1.	Charu C. Aggarwal, "Social Network Data Analytics" Springer New York, NY,	
	2011.	
2.	Carrington, P., Scott, J., Wasserman, 7S. (Eds.). Models and Methods in Social	
	Network Analysis (Structural Analysis in the Social Sciences). Cambridge: Cam-	
	bridge University Press, 2005.	
	Reference Books	
Re	ference Books	
Re 1.	ference Books Xiaoming Fu, Jar-Der Luo, Margarete Boos. Social Network Analysis Interdisci-	
Re 1.		
Re 1. 2.	Xiaoming Fu, Jar-Der Luo, Margarete Boos. Social Network Analysis Interdisci-	

Programme Name	M. Tech. Computer Engineering
Course Code	COSE5025T
Course Title	Statistical Foundations of Data Science
Course Type	Program Elective
Prerequisites: pro	bability theory, data mining.
Course Outcome	s: At the end of the course student will be able to:
CO1. Describe big data and its Dimensionality.	
CO2. Illustrate regression analysis for Big Data.	

CO3. Define Regularization of parameters.

CO4. Design feature screening for the applications.

 ${\bf CO5.}$ Understand supervised and unsupervised learning principals for data.

 ${\bf CO6.}$ Compare Openflow controllers and switches with other enterprise networks.

	Course Contents	Hrs.	CO
1.	Rise of Big Data and Dimensionality: Impact of Big Data,	6	CO1
	Impact of Dimensionality, Aims of High-dimensional statistical		
	learning, Aims of Big Data		
2.	Multiple and Nonparametric Regression: Multiple Linear	6	CO2
	Regression, Model Building and Basis Expansions, Ridge Regres-		
	sion, Reproducing Kernel Regression.		
3.	Penalized Least Squares: Best subset and L ₀ penalty, Folded-	8	CO3
	concave Penalized Least Squares, Lasso and L_1-regularization,		
	Numerical Algorithms, Regularization parameters, Refitted		
	Cross-validation, Extensions to Nonparametric Modeling, Gener-		
	alized Linear Models, Variable Selection via Penalized Likelihod,		
	Numerical Algorithms, Statistical Properties.		
4.	Feature Screening: Correlation Screening, Generalized and	6	CO4,
	Rank Correlation Screeing, Nonparametric Screening, Sure		CO6
	Screening and False Selection		
5.	Supervised and Unsupervised Learning: Model-based Clas-	10	CO5
	sifiers, Kernel Density Classifiers and Naive Bayes, Nearest Neigh-		
	bor Classifiers, Classification Trees and Ensemble Classifiers, Sup-		
	port Vector Machine, Sparsier classifiers, Sparse Discriminant		
	Analysis, Sparse Additive Classifiers, Cluster Analysis, Variable		
	Selection in Clustering, Choice of Number of Clusters, Sparse		
	PCA.		
6.	Covariance Regularization and Graphical Models: Sparse	8	CO6
	Covariance Matrix Estimation, Robust Covariance Inputs, Sparse		
	Precision Matrix and Graphical Models, Latent Gaussian Graph-		
	ical Models		

101	Text Doors	
1.	Fan, J., Li, R., Zhang, CH., and Zou, H. Statistical Foundations of Data Science.	
	CRC Press, 2020.	
2.	James, G., Witten, D., Hastie, T.J., Tibshirani, R. and Friedman, J. An Intro-	
	duction to Statistical Learning with Applications in R . Springer, New York 2013.	
3.	Hastie, T.J., Tibshirani, R. and Friedman, J. The elements of Statistical Learn-	
	ing: Data Mining, Inference, and Prediction (2nd ed). Springer, New York, 2009.	
Re	ference Books ¹⁸	
1.	Buehlmann, P. and van de Geer, S. Statistics for High-Dimensional Data: Meth-	
	ods, Theory and Applications. Springer, New York, 2011.	
2.	Hastie, T., Tibshirani, R., and Wainwright, M. Statistical learning with sparsity.	
	CRC press, New York, 2015.	
3.	Wainwright, M. J High-dimensional statistics: A non-asymptotic viewpoint.	
	Cambridge University Press, 2019.	

Programme Name	M. Tech. Computer Engineering
Course Code	COSE5031S
Course Title	Computer Network Design
Course Type	Program Elective
Prerequisites: Nil	
Course Outcome	s: At the end of the course student will be able to:
CO1. Apply netwo	rking tools and techniques to design computer network.
CO2. Evaluate Tra	ansport Layer protocols for Quality of Service (QoS).
CO3. Examine Net	twork Layer services and Protocols.
CO4. Recommend Application Protocols as per need of application.	
CO5. Categorize various network security flaws.	
CO6. Design and o	leploy computer network as per customer requirement.

		тт	00
	Course Contents	Hrs.	CO
1.	Computer Network Design Foundation: Introduction to	6	CO1,
	Networking: Comparison between OSI and TCP/IP Proto-		CO6
	col Suite, IP addressing, Cables, Repeaters, Bridges, Routers,		
	Switches, Hubs, Gateway, VLANS, Network Design Case stud-		
	ies.		
2.	Transport Layer: Introduction, Transport Layer Protocols,	10	CO2,
	Congestion Control and Quality of Service User Datagram Proto-		CO6
	col (UDP), Transmission Control Protocol (TCP), Stream Control		
	Transmission Protocol (SCTP)		
3.	Network Layer: Introduction, packet format, IPV4 addresses,	7	CO3,
	Internet protocol Version 4(IPV4), IPV6, Address resolution pro-		CO6
	tocol (ARP), Reverse address resolution protocol (RARP), Inter-		
	net control Message protocol (ICMP), Real time transport proto-		
	col (RTP), RTP control protocol (RTCP), VOICE OVER IP etc		
4.	Routing Protocols: Unicast Routing Protocols (RIP, OSPF,	7	CO3,
	and BGP), Multicasting and Multicast Routing Protocols, RIP		CO6
	(Routing information protocol), OSPF (Open shortest path first),		
	BGP (Border gateway protocol), Internet group management pro-		
	tocol (IGMP)		
5.	Application Layer Protocols: Introduction, Host Configura-	5	CO4,
	tion: BOOTP and DHCP, Domain Name System (DNS), TEL-		CO6
	NET and SSH, File Transfer: FTP and TFTP, SNMP		
6.	Applications of Secure Computer Network: Internet Secu-	4	CO5
	rity: Security aspects in Network Layer, Transport Layer, and		
	Application Layer, working of Firewalls, Advances in the domain		
L			

Te	xt Books
1.	Behrouz A. Forouzan, "TCP/IP Protocol Suite", III Edition, Tata McGraw Hill,
	2005
2.	Behrouz A. Forouzan, "Data Communications and Networking", Tata McGraw-
	Hill, Fourth Edition
Re	ference Books
1.	W. Richard Stevens, "TCP/IP Illustrated, Volume 1", Addison-Wesley, Second
	Edition
2.	Internetworking with TCP-IP: Design, Implementation, and Internals, by D. E.
	Comer and D. L. Stevens Vol II, Prentice Hall.

Programme Name	M. Tech. Computer Engineering
Course Code	COSE5032S
Course Title	Internet of Things
Course Type	Program Elective
Prerequisites:	
Course Outcome	s: At the end of the course student will be able to:
CO1. Analyze the importance of various aspects of IoT.	
CO2. Apply differe	ent tools for interoperability for IoT.
CO3. Design differ	ent SDN for IoT.
CO4. Analyze Data Handling and Analytics in IoT.	
CO5. Design and develop different application in IoT.	
CO6. Create differ	ent case studies in IoT.

	Course Contents	Hrs.	CO
1.	Fundamentals of Internet of Things: Introduction to IoT,	4	CO1
	Sensing, Actuation, Basics of Networking, Communication Proto-		
	cols, Sensor Networks, Machine-to-Machine Communications.		
2.	Interoperability in IoT: Introduction to Arduino Program-	6	CO2
	ming, Integration of Sensors and Actuators with Arduino, Intro-		
	duction to Python programming, Introduction to Raspberry Pi.		
3.	Implementation of IoT: Implementation of IoT with Raspberry	8	CO3
	Pi, Introduction to SDN, SDN for IoT.		
4.	Data Handling in IOT: Data Handling and Analytics, Cloud	8	CO4
	Computing, Cloud Computing, Sensor-Cloud, Fog Computing.		
5.	Application of IOT: Connected Vehicles, Smart Grid, Indus-		CO5
	trial IoT. Challenges in Design and Development		
6.	Case Study: Agriculture, Healthcare, Activity Monitoring.		CO6

1.	S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge	
	University Press.	
2.	S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of	
	Things and Industry 4.0. CRC Press.	
Re	Reference Books	
1.	Research Papers	

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5033S	
Course Title	GPU Architecture and Programming	
Course Type	Program Elective	
Prerequisites: Nil		
Course Outcomes	s: At the end of the course student will be able to:	
CO1. Describe concepts of the GPU architecture.		
CO2. Justify memory hierarchy and usage in parallel programming.		
CO3. Apply synchronization primitives in parallel programming.		
CO4. Justify data transfer through streams for parallel programs.		
CO5. Infer kernel functions for the real time systems.		
CO6. Illustrate case studies.		

	Course Contents	Hrs.	CO
1.	Introduction: Streaming Multi Processors, Cache Hierarchy, The	8	CO1
	Graphics Pipeline History, Graphics processors, graphics process-		
	ing units, Clock speeds, CPU/GPU comparisons, heterogeneity,		
	Accelerators, Parallel programming, CUDA / OpenCL / Ope-		
	nACC		
2.	Memory Memory hierarchy, DRAM / global, local / shared, pri-	6	CO2
	vate/local, textures, constant memory, Pointers, parameter pass-		
	ing, arrays and dynamic memory, multi-dimensional arrays, Mem-		
	ory allocation, memory copying across devices, Programs with		
	matrices, performance evaluation with different memories.		
3.	Synchronization Memory consistency. Barriers (local versus	8	CO3
	global), atomics, memory fence. Prefix sum, reduction. Programs		
	for concurrent data structures such as worklists, linked-lists. Syn-		
	chronization across CPU and GPU. Warp Scheduling, Divergence		
4.	Streams: Asynchronous processing, tasks, task-dependence.	6	CO4
	Overlapped data transfers, default stream, synchronization with		
	streams. Events, event-based-synchronization- overlapping data		
	transfer and kernel execution, pitfalls.		
5.	Functions: Device functions, host functions, kernels, functors,	8	CO5
	Optimization examples : optimizing Reduction Kernels Optimiza-		
	tion examples : Kernel Fusion, Thread and Block OpenCL basics		
	and OpenCL for Heterogeneous Computing Support: Debugging		
	GPU programs. Profiling, profile tools, performance aspects	-	
6.	Advanced topics: Case studies, Dynamic Parallelism, Unified	6	CO6
	virtual memory, Multi-GPU processing, Peer access, Heteroge-		
	neous processing		

Text Books

1.	Programming Massively Parallel Processors: A Hands-on Approach; David Kirk,		
	Wen-mei Hwu; Morgan Kaufman; 2016		
Re	ference Books		
1.	CUDA Programming: A Developer's Guide to Parallel Computing with GPUs;		
	Shane Cook; Morgan Kaufman; 2012		
2.	Heterogeneous Computing with OpenCL" – Benedict Gaster, Lee Howes, David		
	R. Kaeli 21		

٦

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5034S	
Course Title	Graph Mining	
Course Type	Program Elective	
Prerequisites: Fundamentals of probability and linear algebra.		

CO1. Demonstrate deep knowledge of the fundamentals of graph matching, visualization and data mining.

CO2. Design and analyze the graph patterns for graph based application.

CO3. Finding topological frequent patterns from graph database.

CO4. Develop efficient and salable implementations of graph mining algorithms.

CO5. Design a decision tree based on chunkingless graph based induction for graph application.

CO6. Applying graph mining knowledge to design effective solution to real-life graph analytic problems

	Course Contents	Hrs.	CO
1.	Fundamentals of Graph Mining: Terminology, Graph	4	CO1
	Databases Graph Matching—Exact And Error-Tolerant Methods		
	And The Automatic Learning Of Edit Costs : Introduction, Def-		
	initions and Graph Matching Methods, Learning Edit Costs, Ex-		
	perimental Evaluation. Graph Drawing Techniques, Examples of		
	Visualization Systems		
2.	Graph Patterns And The R-Mat Generator: NetMine and	8	CO2
	R-MAT, Experiments Discovery Of Frequent Substructures : In-		
	troduction, Preliminary Concepts, Apriori-based Approach, Pat-		
	tern Growth Approach, Variant Substructure Patterns, Experi-		
	ments and Performance Study DFS Approach (gSpan and others),		
	Diagonal and Greedy Approaches, Constraint-based mining and		
	new algorithms, Mining Frequent Subgraphs.		
3.	Finding Topological Frequent Patterns From Graph	6	CO3
	Datasets: Frequent Pattern Discovery from Graph Datasets,		
	Problem Definitions, FSG for the Graph-Transaction Setting,		
	SIGRAM for the Single-Graph Setting, GREW, Scalable Frequent		
	Subgraph Discovery Algorithm.		
4.	Unsupervised And Supervised Pattern Learning In	6	CO4
	Graph Data: Mining Graph Data Using Subdue, Comparison to		
	Other Graph-Based Mining Algorithms, Comparison to Frequent		
	Substructure Mining Approaches, Comparison to ILP Approaches		
	Graph Grammar Learning : Introduction, Related Work, Graph		
	Grammar Learning, Empirical Evaluation		

5.	Constructing Decision Tree Based On Chunkingless	8	CO5
	Graph-Based Induction: Graph-Based Induction Revisited,		
	Problem Caused by Chunking in B-GBI, Chunkingless Graph-		
	Based Induction (Cl-GBI), Decision Tree Chunkingless Graph-		
	Based Links Between Formal Concept Analysis And Graph Min-		
	ing : Presentation, Basic Concepts and Notation, Formal Concept		
	Analysis, Extension Lattice and Description Lattice Give Concept		
	Lattice, Graph Description and Galois Lattice, Graph Mining and		
	Formal Propositionalization, Kernel Methods For Graphs : Intro-		
	duction, Graph Classification, Vertex Classification.		
6.	Applications of Graph Mining: Web mining, centrality anal-	6	CO6
	ysis, Link analysis algorithms, graph clustering and community		
	detection, Node classification and Link prediction, Influential		
	spreaders, Influence maximization, Geo-social and location based		
	networks.		

Te	xt Books		
1.	Diane J. Cook , Lawrence B. Holder, Mining Graph Data, Wiley Publication,		
	2010.		
Re	Reference Books		
1.	Deepayan Chakrabarti and Christos Faloutsos, Graph Mining: Laws, Tools, and		
	Case Studies, Synthesis Lectures on Data Mining and Knowledge Discovery, Mor-		
	gan & Claypool Publishers, 2012		
2.	Charu C. Agrawal, Haixun Wang, Managing and Mining Graph Data, Springer,		
	2012.		

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5035S	
Course Title	Algorithms for Data Science	
Course Type	Program Elective	
Prerequisites: pro	bability theory, data mining.	
Course Outcomes: At the end of the course student will be able to:		
CO1. Describe foundations of data analysis.		
CO2. Illustrate data reduction techniques.		
CO3. Apply data extraction techniques to data.		
CO4. Demonstrate information extraction from data for applications.		
CO5. Illustrate dat	ta clustering for the applications.	

CO6. understand Predictive analysis for time series data and streaming data.

	Course Contents	Hrs.	CO
1.	Introduction: Data Science, Forecasting NASDAQ Stock Prices,	6	CO1
	Algorithms, Data Reduction, Dictionaries, Data Reduction, Sim-		
	ilarity Measures.		
2.	Scalable Algorithms and Associative Statistics: Associative	6	CO2
	Statistics, Univariate Observations, Multivariate Data, Linear Re-		
	gression, Hadoop Ecosystem, Developing a Hadoop Application,		
	MapReduce Algorithm.		
3.	Data Visualization: Principles of Data Visualization, Making	8	CO3
	Good Choices: Univariate Data, Bivariate and Multivariate Data,		
	Harnessing the Machine,		
4.	Extracting Information from Data: Linear Regression	6	CO4
	Model, Least Squares, Confidence Intervals, Distributional Condi-		
	tions, Hypothesis Testing, Factors, Extra Sums-of-Squares F-test,		
	Analysis of Residuals, Healthcare Analytics.		
5.	Cluster Analysis: Hierarchical Agglomerative Clustering, The	8	CO5
	k-Means Algorithm, Distance Metrics, k-Nearest Neighbor Pre-		
	diction Function, Exponentially Weighted k-Nearest Neighbors,		
	Accuracy Assessment, k-Nearest Neighbor Regression, Multino-		
	mial Naïve Bayes Prediction Function.		
6.	Forecasting and Streaming: Time series data analytical meth-	8	CO6
	ods, Drift and Forecasting, Holt-Winters Exponential Forecasting,		
	Regression-Based Forecasting, Time-Varying Regression Estima-		
	tors, Forecasting with a NASDAQ Quotation Stream, Twitter		
	Streaming API, Sentiment Analysis.		

1	Fan, J., Li, R., Zhang, CH., and Zou, H. Algorithms for Data Science. CRC				
1.					
	Press, 2020.				
2.	Brian Steele, John Chandler, Swarna Reddy. Algorithms for Data Science,				
	Springer, 2016.				
Re	Reference Books				
1.	Buehlmann, P. and van de Geer, S. Statistics for High-Dimensional Data: Meth-				
	ods, Theory and Applications. Springer, New York, 2011.				
2.	Hastie, T., Tibshirani, R., and Wainwright, M. Statistical learning with sparsity.				
	CRC press, New York, 2015. 24				
3.	Hastie, T.J., Tibshirani, R. and Friedman, J. The elements of Statistical Learn-				
	ing: Data Mining, Inference, and Prediction (2nd ed). Springer, New York, 2009.				

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5002S	
Course Title	Research Methodology and IPR	
Course Type	Program Core (Mandatory Learning)	
Prerequisites: Nil.		

CO1. To Explore research and describe the research process and research methods. **CO2.** Model and visualize the processes and requirements for conducting successful research.

CO3. Identify the requirement of report writing and apply over it.

CO4. To investigate and apply the basic aspects of the scientific conduct and publication ethics in order to demonstrate through software approach.

CO5. To apply knowledge in publication ethics and investigate misconduct for the exploration of required IT Acts in research project.

CO6. To be able to present, review and publish on scientific paper work.

	Course Contents	Hrs.	CO
1.	Research Methods: Objectives of Research, Various Steps in	6	CO1
	Scientific Research, Types of Research; Research Problem , Re-		
	search Design , Survey Research , Case Study Research and hy-		
	pothesis, Sampling, Measurement and Scaling techniques, Meth-		
	ods of data collection, Design of Survey and Experiments , Hy-		
	pothesis design		
2.	Computer Application in Research Methodology: C Data	5	CO2
	Processing and Modeling :Data processing and Measures Math-		
	ematical model formulation for queries using relational algebra,		
	Design of software Architecture ,Database design, Algorithm De-		
	sign ,GUI design ,Model building and decision making , Probabil-		
	ity Distributions, Fundamentals of Statistical Analysis and Infer-		
3.	ence, Correlation and Regression ,Classification ,Clustering	4	CO3
Э .	Report writing: Structure and Components of Research Report, Types of Report, Layout of Research Report, Writing research	4	005
	proposal ,Mechanism of writing a research report, Performance		
	evaluation and curve fitting, Result declaration by various graphs		
	and charts		
4.	Scientific conduct and publication ethics: Ethics with re-	6	CO4
	spect to science and research, Intellectual honesty and research		
	integrity, falsification, fabrication and plagiarism., duplicate and		
	overlapping publication, salami slicing, Selective reporting and		
	misinterpretation of data, Best practices/standards setting initia-		
	tives and guidelines: COPE, WAME, etc, Publication miscon-		
	ducts: definition, concept, problems that lead to unethical be-		
	havior and vice versa, types, Violation of publications ethic, au-		
	thorship and contribution ship, Identification of publication mis-		
	conduct, complaints and appeals, Software tools: Use of plagiarism		
	tool like Turnitin, Urkund, and other open-source software tool		

5.	Publication ethics and misconduct: Subject specific ethical issues, FFP, authorship,Conflict of interest,Complaints and appeals: examples and fraud from India and abroad,IT Acts for handling misconduct.	5	CO5
6.	Application Of Results and Ethics: Ethical issues , ethical committees , Commercialization , Code of Research Ethics Intellectual property Trademark rights ,Copyright,Patent ,Plagiarism ,royalty Databases Indexing databases, Citation databases: Web of science, Scopus etc. Research Metrics:Impact factor of journal as per citation report, SNIP, SJR, IPP, Cite score ,Metrics: h-index, i10-index, g-index, altmetrics	6	CO6

1 - 0 -			
1.	Research Methodology by G.C.Ramamurthy Dreamtech Publications		
2.	C.R. Kothari, Research Methodology Methods and Techniques, 2/e, Vish-		
	waPrakashan, 2006		
3.	MacIntyre, A., 2003. A Short History of Ethics. a history of moral philosophy		
	from the Homeric age to the 20th century. Routle		
4.	Bhaskar, D., 2019. Ethics in Science Education, Research and Governance. Cur-		
	rent Science, 117(10), pp.1736-1737.		
Re	ference Books		
1.	Engineering Optimization methods and applications A.ravindran ,Wiley publi-		
	cation		
2.	Donald R. Cooper, Pamela S. Schindler, Business Research Methods, 8/e, Tata		
	McGraw-Hill Co. Ltd., 2006.		

Programme Name	M. Tech. Computer Engineering
Course Code	COSE5013T
Course Title	Software Architecture
Course Type	Program Core
Dropoquigitog. Ob	viset Oriented Software Engineering Programming language

Prerequisites: Object Oriented Software Engineering, Programming language. **Course Outcomes:** At the end of the course student will be able to:

CO1. To build knowledge on software architecture ii) To develop architectural approaches from requirements and manage traceability between architecture and requirements iii) iv) To learn Analysis, Implementation and Deployment Apply key project management concepts to software projects.

CO2. To develop architectural approaches from requirements and manage traceability between architecture and requirements.

 ${\bf CO3.}$ To teach students the basic skills in reasoning about and expressing software designs

CO4. To learn Analysis, Implementation and Deployment

CO5. Practice human resource management and communications management techniques for software projects.

CO6. Practice risk management and procurement management techniques for software projects.

	Course Contents	Hrs.	CO
1.	Fundamental of Software Architecture: Prescriptive vs De-	9	CO1
	scriptive Architecture, Architectural Design- DSSA, Architectural		
	Pattern, Architectural Styles: Layered styles, Dataflow styles,		
	Shared memory, interpreter Style, Implicit Invocation Styles, Peer		
	to Peer Styles. Complex Architectural Style: C2 and CORBA		
	Connectors: Roles, Types of Connector, Data Distribution con-		
	nector: Event based, Grid-based, Client-server based, P2P based.		
2.	Architectural Modelling:: Connector Roles, Connector Types	8	CO2
	and Their Variation Dimensions, Example Connectors, Model-		
	ing Concepts, Ambiguity, Accuracy, and Precision, Description		
	Language: Darwin, Rapide, Wright. Domain and Style-Specific		
	ADLs: Koala, Weaves AADL . Visualization Techniques: Textual,		
	Informal Graphical Editor, UML, LTSA, xADL 2.0, MTAT		
3.	Architectural Analysis: Analysis Goal, Scope of Analysis,	6	CO3
	Types of Analysis Analysis Techniques: Inspection and Review		
	Based: ATAM, Model based: Wright, Reliability Analysis		
4.	Applied Architectures and Styles, Designing for Non-	9	CO4
	Functional Properties: Distributed and Networked Archi-		
	tectures, Architectures for Network-Based Applications, Decen-		
	tralized Architectures, Service-Oriented Architectures and Web		
	Services, Efficiency, Complexity, Scalability and Heterogeneity,		
	Adaptability, Dependability.		

5.	Role of architecture in Software engineering: Enterprise Architectures, Zachman's Framework; Architectural Styles, De-	6	CO5
	sign Patterns; Architecture Description Languages; Product-line		
	architectures; Component based development		
6.	Design Patterns: Basic patterns: facade, adapter, flyweight	9	CO6
	; delegates: visitors, command, memento; grammars: composite,		
	decorator, interpreter; frameworks: template method, factory, ab-		
	stract factory; separation of concerns: observer, mediator, model-		
	view-controller.		

Te	xt Books		
1.	Richard N. Taylor, Nenad Medvidovic, Eric M. Dashofy, Software Architecture:		
	Foundation, Theory and Practice, Wiley, India , 2009		
Re	Reference Books		
1.	Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Miachel		
	Stal, Douglas Schmidt.Pattern Oriented Sofware Architecture, Volumes 1 and 2		
2.	M. Shaw and D.Garlan, Software Architecture: Perspectives on an Emerging		
	Discipline, Pearson, 2006		
3.	Len Bass, Paul Clements, Rick Katzman, Ken Bass. Software Architecture in		
	Practice		

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5014S	
Course Title	Software Project Management	
Course Type	Program Core	
Prerequisites: Nil.		

CO1. Apply key project management concepts to software projects.

CO2. Discuss project management process groups and project integration management techniques for software projects.

CO3. Illustrate scope management and time management of software projects.

CO4. Illustrate cost management and quality management of software projects.

CO5. Practice human resource management and communications management techniques for software projects.

CO6. Practice risk management and procurement management techniques for software projects.

	Course Contents	Hrs.	CO
1.	Introduction to Project Management: Introduction to	6	CO2
	Project and Project Management, Program and Project Port-		
	folio Management, The Role of the Project Manager. A Sys-		
	tems View of Project Management, Understanding Organizations,		
	Stakeholder Management, Project Phases and the Project Life Cy-		
	cle, The Context of Software Projects. Recent Trends Affecting		
	Software Project Management.		
2.	The Project Management Process Groups and Project	6	CO2
	Integration Management: Project Management Process		
	Groups, Mapping the Process Groups to the Knowledge Ar-		
	eas, Developing Software Project Management Methodology. In-		
	troduction to Project Integration Management, Strategic Plan-		
	ning and Project Selection, developing a Project Management		
	Plan, Project Execution, Directing and Managing Project Work,		
	Monitoring and Controlling Project Work, Performing Integrated		
	Change Control, Closing Projects or Phases.		
3.	Project Scope and Time Management: Planning Scope	6	CO2
	Management, CollectProject Scope and Time Management:ing		
	Requirements, Defining Scope, Creating the Work Breakdown		
	Structure, Validating Scope, Controlling Scope, Using Software		
	to Assist in Project Scope Management. Planning Schedule Man-		
	agement, Defining Activities, Sequencing Activities, Estimating		
	Activity Resources, Estimating Activity Durations, Developing		
	and Controlling the Schedule		

4	Design Cost and Quality Managements. The Insportance	6	COA
4.	Project Cost and Quality Management: The Importance	0	CO4
	of Project Cost Management, Planning Cost Management, Esti-		
	mating Costs, Determining the Budget, Controlling Costs, Using		
	Project Management Software to Assist in Project Cost Man-		
	agement. Introduction Project Quality Management, Planning		
	Quality Management, Performing Quality Assurance, Controlling		
	Quality, Tools and Techniques for Quality Control.		
5.	Project Human Resource and Communications Manage-	6	CO5
	ment: Introduction to Project Human Resource Management,		
	Project Human Resource and Communications Management: The		
	Importance of Human Resource Management, Keys to Manag-		
	ing People, Developing the Human Resource Plan, Acquiring		
	the Project Team, Developing the Project Team, Managing the		
	Project Team, Using Software to Assist in Human Resource		
	Management. Introduction to Project Communications Manage-		
	ment, Planning Communications Management, Managing Com-		
	muications, Controlling Communications, Information Distribu-		
	tion, Performance Reporting, Managing Stakeholders.		
6.	Project Risk Management and Procurement Manage-	6	CO6
	ment: The Importance of Project Risk Management, Planning	-	
	Risk Management, Common Sources of Risk on IT Projects, Iden-		
	tifying Risks, Performing Qualitative Risk Analysis, Performing		
	Quantitative Risk Analysis, Planning Risk Responses, Controlling		
	Risks. Planning Procurement Management, Planning Contract-		
	ing, Conducting Procurements, Controlling Procurements, Clos-		
	ing Procurements.		

Te	Text Books		
1.	Kathy Schwalbe, "Information Technology Project Management", Revised, 7th		
	Edition, Cengage Learning.		
Re	Reference Books		
1.	B. Hughes, M. Cotterell, "Software Project Management", Tata McGraw-Hill		
	Education, 5th Edition.		
2.	John M. Nicholas, Herman Steyn, "Project Management for Business and Tech-		
	nology", PHI, 4th Edition.		
3.	Joseph Phillips, "IT Project Management: On Track from Start to Finish", Mc-		
	Graw Hill Publication, 3rd Edition.		
4.	P. Jalote, "Software Project Management in Practice", Pearson Education.		

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5021T	
Course Title	Network Administration	
Course Type	Program Elective	
Prerequisites: Co	mputer Networks	
Course Outcomes: At the end of the course student will be able to:		
CO1. Analyze different network architectures and their features.		
CO2. Perform various network operations and maintenance activities.		
CO3. Identify the requirements of a data center network.		
CO4. Examine and analyze the network effectively.		
CO5. Design a secure network and resolve the issues.		

	Course Contents	Hrs.	CO
1.	Network Architecture Overview: Physical Infrastructure, Logical Design, ISO/OSI Model, Network Topologies, Data Com- munication and Routing, Network Addressing and Security Fea-	6	CO1
	tures		
2.	Network Operations and Processes: Monitoring, Manage-	7	CO2,
	ment: Access and Audit Trail, Life Cycle, Configuration Manage-		CO4
	ment, Deployment Process, Documentation: Network Design and		
	Implementation, DNS, Labeling, Support: Tools, Organizational		
	Structure, Network Services.		01.0
3.	Datacenter Networks: Build/Rent/Outsource, Requirements,	7	CO1,
	Capacity Management, Life-Cycle Management, Patch Cables,		CO3
	Labeling, Console Access, Workbench, Tools and Supplies, Se-		
	curity Aspects.	_	
4.	Network Monitoring: Overview, Monitoring Platforms, Data	8	CO2,
	Collection and Performance Analysis, Systems and Service Mon-		CO4
	itoring, SNMP, Namespaces and Nameservices, Time Manage-		
	ment, Customer Support, Incident Report.		
5.	Network Maintenance: Change Management, Scaling and	8	CO2,
	Expansion, Server Upgrades, Maintenance Windows, Software		CO4
	Repositories and Licencing, Data Storage, Backup and Restore,		
	Disaster Recovery.		
6.	Network Security: Basic Security Measures, The OSI Secu-	6	CO1,
	rity Architecture, Security Attacks, Security Services and Mech-		CO5
	anisms, Fundamental Security Design Principles, Attack Surfaces		
	and Attack Trees, A Model for Network Security, Standards, Le-		
	gal and Ethical Issues.		

Te	Text Books		
1.	Thomas Limoncelli, Christina Hogan, Strata Chalup "The Practice of System		
	and Network Administration, Volume 1", 3ed, Addison-Wesley (2017)		
2.	Evi Nemeth, Garth Snyder, Trent Hein, Ben Whaley, Dan Mackin, "UNIX and		
	Linux System Administration Handbook", 5ed, Addison-Wesley (2018)		
Reference Books			
1.	Mark Burgess, "Principles of Network and System Administration", 2ed, John		
	Wiley (2004) 31		
2.	William Stallings, "Network Security Essentials", 6ed, Pearson (2017)		

Programme Name	M. Tech. Computer Engineering			
Course Code	COSE5022T			
Course Title	Wireless Communication			
Course Type	Program Elective			
Prerequisites: Nil				
Course Outcomes: At the end of the course student will be able to:				
CO1. Justify the wireless technology requirements.				
CO2. Apply the MAC protocols for the design of wireless network.				
CO3. Inspect the behaviour of Mobile IP and routing protocols.				
CO4. Examine the	ne impact of transport layer protocols over wireless and wired			
medium.				

CO5. Evaluate resource optimization techniques for better performance.

CO6. Design and deploy different wireless networks.

	Course Contents	Hrs.	CO
1.	Introduction to Wireless technology: Signals, Antennas,	4	CO1
	Spectrum, Radio Propagation Mechanism, Characteristics of wire-		
	less Channel, Issues in Ad Hoc Wireless Networks, Multiplexing,		
	Modulation.		
2.	MAC Protocols for Ad Hoc Wireless Networks: Introduc-	4	CO2
	tion, Issues in Designing a MAC Protocol for Ad Hoc Wireless		
	Networks, Motivation for a specialized MAC, Design Goals of a		
	MAC Protocol for Ad Hoc Wireless Networks, Classifications of		
	MAC Protocols.		
3.	Wireless LAN and PAN: Fundamentals of WLAN, IEEE	8	CO2
	802.11 standards, HIPERLAN, Bluetooth.		
4.	Wireless Internet: Introduction, Mobile IP, WAP. Routing Pro-	6	CO4
	tocols for Ad Hoc Wireless Networks: Introduction, Issues in De-		
	signing a Routing Protocol for Ad Hoc Wireless Networks, Clas-		
	sifications of Routing Protocols: Table-Driven Routing Protocols,		
	On-Demand Routing Protocols, Hybrid Routing Protocols, Rout-		
	ing protocols with efficient flooding mechanisms (OLSR), power-		
	aware routing protocols, Multicast routing: zonal routing etc		
5.	Transport Layer and Security Protocols for Ad Hoc	6	CO5
	Wireless Networks: Introduction, Traditional TCP, indirect		
	TCP, Snooping TCP, Fast retransmit/fast recovery, transmis-		
	sion/time out freezing, selective retransmission, transaction ori-		
	ented TCP.Network Security Attacks: Network Layer, Transport		
	Layer, Application Layer, Key Management, Secure Routing in		
	Ad Hoc Wireless Networks.		

6.	Quality of Service in Ad Hoc Wireless Networks: In-	8	CO6
	troduction, Issues and Challenges in Providing QoS in Ad Hoc		
	Wireless Networks, Classifications of QoS Solutions, QoS Frame-		
	works for Ad Hoc Wireless Networks. Energy Management in		
	Ad Hoc Wireless Networks: Introduction, Need for Energy Man-		
	agement in Ad Hoc Wireless Networks, Classification of Energy		
	Management Schemes, Battery Management Schemes, Transmis-		
	sion Power Management Schemes, System Power Management		
	Schemes. Recent Advances in Wireless Networks.		

Te	Text Books		
1.	Jochen Schiller, "Mobile communications", 2nd Edition, Pearson Education,		
	2008.		
2.	C. Siva Ram Murthy and B.S. Manoj, "Ad Hoc Wireless Networks: Architectures		
	and Protocols", 3 rd Edition, Pearson education, 2008.		
Re	ference Books		
1.	Wiiliam Stallings, "Wireless Communications and Networks" Prentice Hall, 2nd		
	edition, 2005.		
2.	C K Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", 1st		
Edition, Pearson education, 2002.			
3.	Rappaport, "Wireless Communications Principals and Practices", 2nd Edition,		
	Pearson Education Pvt. Ltd, 2003.		

Programme Name	M. Tech. Computer Engineering	
Course Code	COSE5023T	
Course Title	Big Data Analytics	
Course Type	Program Elective	
Prerequisites: Database Management System, Java, Python, AI, Machine Learning		

CO1. To analyse the important components of big data.

CO2. Illustrate different components in Hadoop and MapReduce.

CO3. Develop problem solving skills like Collect, manage, store, query, and analyze various forms of Big Data using NoSQL.

CO4. Solve different problems using data streaming in big data analytics.

CO5. To apply adequate perspectives of big data analytics in various applications like recommender systems, social media applications, etc.

CO6. To analyse spark framework of big data analytic.

	Course Contents	Hrs.	CO
1.	Introduction to Big Data and Hadoop: Introduction to Big	4	CO1
	Data, Big Data characteristics, types of Big Data, Traditional		
	vs. Big Data business approach, Case Study of Big Data So-		
	lutions,Concept of Hadoop Core Hadoop Components; Hadoop		
	Ecosystem		
2.	Hadoop HDFS and MapReduce: Distributed File Sys-	4	CO2
	tems: Physical Organization of Compute Nodes, Large-Scale File-		
	System Organization. MapReduce: The Map Tasks, Grouping by		
	Key, The Reduce Tasks, Combiners, Details of MapReduce Ex-		
	ecution, Coping with Node Failures. Algorithms Using MapRe-		
	duce: Matrix-Vector Multiplication by MapReduce, Relational-		
	Algebra Operations, Computing Selections by MapReduce, Com-		
	puting Projections by MapReduce, Union, Intersection, and Dif-		
	ference by MapReduce Hadoop Limitations		
3.	NoSQL: Introduction to NoSQL, NoSQL Business Drivers,	6	CO3
	NoSQL Data Architecture Patterns: Key-value stores, Graph		
	stores, Column family (Bigtable)stores, Document stores, Varia-		
	tions of NoSQL architectural patterns, NoSQL Case Study NoSQL		
	solution for big data, Understanding the types of big data prob-		
	lems; Analyzing big data with a shared-nothing architecture		
	Choosing distribution models: master-slave versus peer-to-peer;		
	NoSQL systems to handle big data problems		

4.	Mining Data Streams: The Stream Data Model: A Data- Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing. Sampling Data techniques in a Stream Filtering Streams: Bloom Filter with Analysis,Counting Distinct Elements in a Stream, Count-Distinct problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements Counting Frequent Items in a Stream, Sampling Methods for Streams, Frequent Item sets in Decaying Win- dow,Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows. Finding Similar Items, Clustering, and Real-Time Big	6	CO4
9.	Data Models: Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Dis- tance, Edit Distance, Hamming Distance. CURE Algorithm, Stream-Computing, A Stream-Clustering Algorithm, Initializing and Merging Buckets, Answering Queries PageRank Overview, Efficient computation of PageRank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector. A Model for Recommendation Systems, Content-Based Recom- mendations, Collaborative Filtering. Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Com- munities in a social graph.	0	
6.	Big Data Analytics Frameworks: Spark Framework: Intro- duction to GPU Computing, CUDA Programming Model, CUDA API, Simple Matrix, Multiplication in CUDA, CUDA Memory Model, Shared Memory Matrix Multiplication, Additional CUDA API Features, Spark SQL and GraphX: SQL Context, Importing and Saving data, Data frames – using SQL, GraphX overview, Creating Graph, Graph Algorithms, Spark Streaming: Overview, Errors and Recovery, Streaming Source, Streaming live data with spark.	7	CO6

Te	Text Books			
1.	CreAnand Rajaraman and Jeff Ullman — Mining of Massive Datasets, Cambridge			
	University Press, 2014			
2.	Alex Holmes — Hadoop in Practice, Manning Press, Dreamtech Press.			
3.	Dan Mcary and Ann Kelly — Making Sense of NoSQL – A guide for managers			
	and the rest of us, Manning Press			
Re	ference Books			
1.	1. Bill Franks, Taming The Big Data Tidal Wave: Finding Opportunities In Huge			
	Data Streams With Advanced Analytics, Wiley			
2.	2. Chuck Lam, Hadoop in Action, Dreamtech Press			
3.	3. Jared Dean, Big Data, Data Mining, and Machine Learning: Value Creation for			
	Business Leaders and Practitioners, Wiley India Private Limited, 2014.			
4.	Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques,			
	Morgan Kaufmann Publishers, 3rd ed, 2010.			

Programme Name	M. Tech. Computer Engineering (Specialization in Network			
	Infrastructure and Management Systems)			
Course Code	CONM5031S			
Course Title	Network Security			
Course Type	Program Elective			
Prerequisites: Ne	tworking.			
Course Outcomes: At the end of the course student will be able to:				
CO1. Demonstrat	CO1. Demonstrate the concept of cryptography, Network security ,Layered Archi-			
tecture.				
CO2. Evaluate network Stack Vulnerabilities, threats and counter measures				
CO3. Analyze the network and web attacks at different layers of TCP/IP stack.				

CO4. Explore a better understanding of Network Security Protocols.CO5. Apply the fundamentals of security in programs, operating systems and databases.

	Course Contents	Hrs.	CO
1.	Overview of Security: Motivation, Terminology/Background, Cryptography Overview, Confidentiality, Integrity, Authenti- cation: Foundations,Symmetric key encryption, Block modes, Asymmetric key encryption, Hashes, MACs, Digital Signa- tures, key distribution, one way/mutual/mediated authentica- tion,Protocols Overview,Introduction to Network security ,Lay- ered architecture, Client Server architecture, Peer-to-Peer Archi- tecture.	4	CO1
2.	Vulnerabilities and Threat in Network Stack: Basic services used and provided by TCP/IP Stack, Types of devices constitut- ing a network. Concept of Internet Service Providers (ISPs) and overall conceptual view of the Internet. Routing fundamen- tals. Different types of networks such as LAN, WAN, VPN, etc, TCP/IP Protocol and its Vulnerabilities, Hyper Text Transfer Protocol (HTTP) and corresponding cyber security vulnerabil- ities.TCP/UDP/IP Vulnerabilities, Data link layer protocol vul- nerability, Routing attacks.	7	CO2
3.	Network and Web Attacks: Attacks at link/network/transport/application layer,Denial of Service (DOS) attacks, Firewalls, Intrusion Detection,Malware and its types, The OWASP top 10-attacks,Client side and Server side attacks: Injection, Vulnerability, SQL injection, Cross Site Scripting (XSS) . Session Hijacking,Phishing, Click jacking, scripting, Broken Authentication and Session Management, Insecure Direct Object References, Cross Site Request Forgery (CSRF) Vulnerability, Failure to Restrict URL Access, Invalidated Redirects and Forwards.	7	CO3

4.	Network Security protocols: Application Layer:	7	CO4
	SSH.PGP,MIME,Transport Layer: TLS/SSL, Network Layer:		
	IPSec, Link Layer: WPA, WEP, Open source tools for defense		
	mechanism, Network Security controls, How to use network		
	analysis tool: Wireshark and NMAP, ESAPI structure: security		
	mechanism to mitigate the top 10 threats of OWASP, Defenses		
	against the same.		
5.	System Security: Introduction to System Security, Server Se-	7	CO5
	curity, OS Security, Database Security, Various concepts of system		
	and server security, overview of program security.		
6.	Advances in network security: Cyber Security and Recent	7	CO5,
	Technologies ,Security aspects in IoT, Cloud Computing and Im-		CO1
	age/video data. Bio-metrics, Mobile Computing and Hardening		
	on android and ios, IOT Security, Android Malware Analysis, Ex-		
	perimentation using open source tools		

Te	Text Books			
1.	William Stallings, "Cryptography and Network Security", Pearson Educa-			
	tion/PHI, 2006			
2.	Network Security Bible second edition by eric cole			
Re	ference Books			
1.				
2.				

Programme Name M. Tech. Computer Engineering		
Course Code	COSE5032S	
Course Title	Blockchain Technology	
Course Type	Program Elective	
Prerequisites: Da	ata Structures, Algorithms, Operating System, Computer Net-	
works.		
Course Outcome	s : At the end of the course student will be able to:	
CO1. Identify Bloc	ckchain structure and its importance.	
CO2. Differentiate	Blockchain Platforms and their working.	
CO3. Classify cons	sensus algorithms for different case studies.	
CO4. Design smart	t contract for real world applications.	
CO5. Asses security issues of blockchain and smart contracts.		
CO6. Demonstrate	e skills to build cryptocurrency applications based on Blockchain	
Technology.		

	Course Contents	Hrs.	CO
1.	Introduction: Concepts of cryptocurrency and Blockchain, Ad-	4	CO1
	vantages over Traditional Databases, Block in a Blockchain, Con-		
	cept of Blockchain parameters- Header, Miners, Difficulty, Nonce,		
	Stakes, Forking, Double- Spending Problem; Types of Blockchain:		
	Public, Private, Consortium.		
2.	Blockchain Platforms: Bitcoin Network and Architecture,	8	CO2
	Transaction in Bitcoin Network, Mining, Creation of Coins, Con- sensus Mechanisms and Validation: Proof of Work (PoW), Proof		
	of Stake (PoS), Practical Byzantine Fault Tolerance (PBFT),		
	Bitcoin Security issues. Ethereum vs. Bitcoin, Transactions,		
	Ethereum Blocks, Mining Algorithm, Gas, Fees, Eth 2.0 GHOST		
	Protocol.		
3.	Consensus Algorithms:: Study and comparison of different	4	CO3
	consensus algorithms: Algorand, Ouroboros, Ethereum's consen-		
	sus, Ripple Protocol Consensus Algorithm (RPCA), etc		
4.	Smart Contracts Fundamentals: Introduction to Smart Con-	6	CO4
	tracts, Framework of smart contract, Life cycle of smart contract,		
	Solidity, Writing and Deploying Smart Contracts in Solidity, Vul-		
	nerabilities in Smart Contracts, Attacks, Prevention of Attacks.		
5.	Security: Wallets and Keys, User Addresses and Privacy Security	4	CO5
	issues in Blockchain: Anonymity, Sybil Attacks, Selfish Mining,		
	51/49 ratio Attacks		
6.	Case Studies: Application based: e-Governance, e-Commerce,	9	CO6
	Database Applications where third party is involved Use Cases:		
	Cryptocurrency and Other Sectors like Finance, Voting System,		
	and Healthcare, etc. Block chain in Social Networking, block chain		
	in 5G		

Te	Text Books		
1.	Andreas M. Antonopoulos, Gavin Wood, Dr. Gavin Wood. Mastering Ethereum:		
	Building Smart Contracts and DApps. O'Reilly Media, Incorporated, 2018.		
2.	A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S Goldfeder, "Bitcoin and		
	Cryptocurrency Technologies", Princeton University Press, 2016		
3.	Andreas M. Antonopoulos. Mastering Bitcoin Programming the Open		
	Blockchain. O'Reilly Media 2017.		
Re	Reference Books		
1.	M. Swan, "Blockchain: Blueprint for a New Economy", OReilly, 2015		

Programme Name	M. Tech. Computer Engineering		
Course Code	COSE5033S		
Course Title	Information Retrieval		
Course Type	Open Elective		
Prerequisites: Da	ta Mining, DBMS.		
Course Outcome	s: At the end of the course student will be able to:		
CO1. Understand	the working, significance, applications of Information retrieval		
systems.			
CO2. Compare dif	CO2. Compare different IR models.		
CO3. Design text	and multimedia indexing structures for searching of web docu-		

ments. **CO4.** Justify the evaluation techniques to measure the performance of Information Retrieval System.

CO5. Apply machine learning algorithms for information retrieval.

CO6. Design image retrieval algorithms.

	Course Contents	Hrs.	CO
1.	Introduction: Information Retrieval systems, Working with electronic text, Test Collections, Open source IR systems, Information versus Data Retrieval, Basic Concepts: The Retrieval Process, Logical View of Documents. Modelling: A Taxonomy of IR Models, Reference Collections. Significance of Information Retrieval, Impact of the web on Data Retrieval, Applications of Data Retrieval, Basic Data Retrieval System Architecture, Relationships between Digital library and IRS, Open Source IR Systems : Lucene, Wumpus	4	CO1
2.	Basic Searching and Indexing: Preprocessing: Simple Tokenizing, Stop-word Removal, Stemming and Lemmatiza- tion,Boolean and vector-space retrieval models,Sparse Vectors, Positional Postings, Inverted (static and dynamic) indices ,In- dex Construction, Index Compression, Term weighting, TF-IDF weighting, cosine similarity, Relevance feedback and query expan- sion. Language Model based IR, Probabilistic Model, Binary In- dependence Model, Latent Semantic Indexing Model,	8	CO2
3.	Evaluation: Data Retrieval System Evaluation, Standard test Collections, Evaluation of Unranked Retrieval Sets, Evaluation of Ranked Retrieval Results, Assessing Relevance, Evaluations on Benchmark Text Collections. The Text Retrieval Conference (TREC), Using Statistics in Evaluation, Minimizing Adjudica- tion Effort, Nontraditional Effectiveness Measures, Measuring Ef- ficiency: Efficiency Criteria, Queueing Theory, Query Scheduling, Caching.	4	CO3

4.	Web Search: Web Search Basics, Web Crawling and Indexing, XML retrieval, Link Analysis, Page Rank and HITS algorithms, Searching and Ranking, Relevance Scoring and ranking for Web, Hubs and Authorities. Multimedia IR: Spatial Access Methods, Distance Function, Generic Multimedia Indexing Approach	6	CO4
5.	Parallel and distributed IR: Hadoop and Map Reduce, Per- sonalized search, Collaborative filtering and content-based rec- ommendation of documents and products, handling "invisible" Web,Snippet generation, Summarization, Question Answering, Cross-Lingual Retrieval. Vector space classification, Support vec- tor machines and machine learning on documents, Flat cluster- ing, Hierarchical clustering, Matrix decomposition. Naive Bayes, Decision Trees, and Nearest Neighbor, expectation maximization (EM).	8	CO5
6.	Image Retrieval: Content-based Image Retrieval, Image Feature Description, Order system, Texture, Shape, Characteristics of Image Queries, Image Retrieval systems.	6	CO6

Те	xt Books
1.	C. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval,
1.	Cambridge University Press, 2008.
2.	Ricardo Baeza - Yates and Berthier Ribeiro – Neto, Modern Information Re-
	trieval: The Concepts and Technology behind Search 2nd Edition, ACM Press
	Books 2011.
3.	Stefan Büttcher, Charles L, A. Clarke, Gordon V. Cormack, Information Re-
	trieval: Implementing and evaluating search engines, MIT Press, 2010
Re	ference Books
1.	David A. Grossman, Ophir Frieder, Information Retrieval: Algorithms and
	Heuristics, Springer, 2004.
2.	Frakes, Information Retrieval: Data Structures and Algorithms, Pearson, 2009
3.	Bruce Croft, Donald Metzler and Trevor Strohman, Search Engines: Information
	Retrieval in Practice, 1 st Edition Addison Wesley, 2009.
4.	Mark Levene, An Introduction to Search Engines and Web Navigation, 2nd Edi-
	tion Wiley, 2010.

CO6. Create software system using UX and UI. s

	Course Contents	Hrs.	CO
1.	Introduction to Human-Computer Interaction: Objective,	4	CO1
	Overview and historical evolution of HCI, Ergonomics, Interaction		
	styles, Elements of the WIMP (windows, icons, pointers, menus)		
	interface, interactivity, the context of the interaction, paradigms		
	for interaction, Cognitive walkthrough.		
2.	Design process: Human interaction with computers, impor-	8	CO2
	tance of human characteristics human consideration, Human in-		
	teraction speeds, understanding business junctions. Screen De-		
	signing, Interaction Design, Interactive Design, Interface Design,		
	GUI Design, Software Tools, Dialog Design.		
3.	Web Interfaces: Designing Web Interfaces – Drag and Drop,	4	CO3
	Direct Selection, Contextual Tools, Overlays, Inlays and Virtual		
	Pages, Process Flow		
4.	Interaction Styles: Concept of combined reality, virtual reality,	6	CO4
	technologies, existing scientific and commercial projects. Sensing		
	and tracking. Sensors for sensing of fingers, hands and touching.		
	Interactive digital surfaces, manipulation of digital objects, dis-		
	plays with rear projection.		
5.	Usability Testing and Analytic Evaluation: Involves usabil-	8	CO5
	ity testing through examples, the basics of experimental design,		
	the methods used in usability testing, the role of field studies		
	in evaluation, the important concepts associated with inspection		
	methods, how heuristic evaluation can be adapted to evaluate		
	different types of interactive products, what is involved in doing		
	heuristic evaluation and various kinds of walkthrough, how to per-		
	form predictive technique, and when to use them, the advantages		
	and disadvantages of using analytical evaluation.		
6.	Design Case Studies: 1] Multikey press Hindi Text Input	6	CO6
	Method on a Mobile Phone, 2] GUI design for a mobile phone		
	based Matrimonial application. 3] Employment Information Sys-		
	tem for unorganized construction workers on a Mobile Phone		

Tez	xt Books
1.	Interaction design: Beyond Human-Computer Interaction, 4/e by J. Preece, Y.
	Rogers and H. Sharp and Published by John Wiley and Sons
2.	Designing the User Interface, 5/e (Pub. Pearson) - Shneiderman B., Plaisant C.,
	Coen M., Jacobs S
3.	Bill Scott and Theresa Neil, —Designing Web Interfaces, First Edition, O 'Reilly.
Re	ference Books
1. Human – Computer Interaction. Alan Dix, Janet Fincay, Gre Goryd, Abo	
	Russell Bealg, Pearson Education.
2.	Interaction Design Prece, Rogers, Sharps. Wiley Dreamtech.
3.	User Interface Design, Soren Lauesen, Pearson Education.

Programme Name	M. Tech. Computer Engineering		
Course Code	COSE5066T		
Course Title	Machine Learning		
Course Type	Open Elective-II		
Prerequisites: Basic understanding of probability and statistics, linear algebra and			
calculus.			
Course Outcomes: At the end of the course student will be able to:			
CO1 Gain knowledge about basic concepts of Machine Learning			
CO2. Identify machine learning tools and techniques solving real time problems			
CO3. Solve the problems using various machine learning techniques			
CO4. Optimise and test the model for best performance.			
CO5. Exploring the advances in machine learning future to solve real time case			
studies			

	Course Contents	Hrs.	CO
1.	Introduction: Introduction and Basic Concepts of ML, Tax- onomy of ML, Types of machine learning: Supervised Learning, Regression Vs Classification, Unsupervised Learning, Clustering, Classification, Rules mining, Prediction, Issues in machine learn- ing.	6	CO1
2.	Machine learning Tools: R, Python, Scikit Learn, BigML, WEKA, or. any one platform to make machine learning in practice with case studies.Data and Data understanding, Data preprocessing. Learning Association Rules: Mining Frequent Patterns, Apriori algorithm, and other varients of Association rules mining algorithms.	8	CO2, CO3
ວ.	Supervised Learning: Decision Trees: ID3, Classification and Regression Trees, Regression. Neural Networks, Support vector machines, Generalized Linear Models (GLM), Probabilistic Learn- ing: Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Markov Decision Process (MDP). Ensemble Learning: Model Combination Schemes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking	08	CO1, CO3
4.	Unsupervised learning: Clustering, Instance-based learning, K-nearest Neighbour, Dimensionality Reduction, K-Mode Clus- tering, Expectation Maximization, Gaussian Mixture Models.	6	CO3

5.	Balanced Machine Learning Model and Model Evalua-	8	CO4
	tion: What Are Evaluation Metrics? Types of Predictive Models,		
	Confusion Matrix, F-Score, Accuracy, Precision, Recall, Gain and		
	Lift Charts , Kolmogorov-Smirnov Chart , Area Under the ROC		
	Curve, Log Loss, Gini Coefficient, Concordant – Discordant Ratio,		
	Root Mean Squared Error (RMSE), Root Mean Squared Loga-		
	rithmic Error, R-Squared/Adjusted R-Squared, Cross Validation,		
	Bias-Variance and Error Analysis, Bias/variance trade-off, Error		
	Analysis, Normal Equations, Variance, Gradient Descent, Model		
	Balancing: Overfitting, underfitting, Variance, Bias and Model		
	Complexity in Machine Learning.		
6.	Introduction to Advanced topics in Machine Learning:	6	CO5
	Deep Neural Networks, Vectorization, Backpropagation, For-		
	ward propagation, multi-label classification, Conditional Ran-		
	dom Fields (CRFs), Reinforcement Learning, Spectral clustering-		
	Semi-supervised learning. Deep Learning Models: Introduction to		
	NN, important terms in NN, DNN, CNN, RNN, Model Training		
	and testing, Pretrain models, parameter tuning and customized		
	models, Deep learning in images processing, video processing, text		
	processing.		

Te	Text Books	
1.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall	
	of India, Third Edition, 2014.	
2.	Miroslav Kubat, "An Introduction to Machine Learning", Springer, 2015.	
Reference Books		
1.	Tom Mitchell, "Machine Learning", McGraw-Hill, 2017	
2.	Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and	
	TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems",	
	Third Edition, OReilly Publication, 2022	
3.	John D. Kelleher, Deep Learning, The MIT Press Essential Knowledge series,	
	2019	
4.	Jerome Friedman, Robert Tibshirani, Trevor Hastie, "The Elements of Statistical	
	Learning" Springer, 2017.	