VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE (VJTI) MATUNGA, MUMBAI 400 019 (Autonomous Institute affiliated to University of Mumbai)

Curriculum (Scheme of Instruction & Evaluation and Course contents) For Post Graduate Programme Leading to

> Masters of Engineering Degree in Computer Engineering

Department of Computer Engineering and Information Technology

Implemented from the batch admitted in Academic Year 2022-23

2024

M Tech Computer Engineering Programme Outcomes

	LIST OF PROGRAM OUTCOMES
PO1	An ability to independently carry out research /investigation and
	development work to solve practical problems.
PO2	An ability to write and present a substantial technical re-
	port/document.
PO3	Students should be able to demonstrate a degree of mastery over
	the field of computer engineering and specialized topics in various
	domains of computer engineering.
PO4	An ability to apply mathematical modeling, algorithms and tech-
	niques in respective areas of computer engineering to solve complex
	engineering problems.
PO5	An ability to design and develop robust, reliable, scalable tools
	and techniques for knowledge-based systems to enhance lifelong
	learning.

MTech Computer Engineering Scheme of Instruction and Evaluation SEMESTER I

		Scheme of Instruction				Scheme	of Eva	luation
S.No	Course Code	Course Title	L-T-P	Credits	TA	MST	ESE	ESE hours
1	COCE5001S	Computational Methods	3-0-0	3	20	20	60	3
		(PSM)						
2	COCE5011T	Advanced Algorithms	3-1-0	4	20	20	60	3
		(Core-1)						
3	COCE5012S	Cloud Computing (Core-	3-0-0	3	20	20	60	3
		2)						
4	COCE5021T	Program Elective -1	3-1-0	4	20	20	60	3
5	COCE5031S	Program Elective - 2	3-0-0	3	20	20	60	3
6	COCE5061S	Open Elective - 1	3-0-0	3	20	20	60	3
7	COCE5071L	Cloud Computing (Labo-	0-0-2	1	60%	%CIE	40	-
		ratory -1)						
8	COCE5072L	Software Testing (Labora-	0-0-2	1	60%	%CIE	40	-
		tory -3)						
9	COCE5073L	Cross-Platform App De-	0-0-2	1	60%	%CIE	40	-
		velopment (Laboratory -						
		3)						
10	MTEC081L	Liberal Learning-1	0-0-2	1	100	%CIE	_	-
			28	24				

Abbreviations: S: Standalone, T: Standalone with Tutorial, L: Laboratory TA: Teachers Assessment / Term work Assessment, MST: Mid Semester Test, ESE: End Semester written Examination, CIE: Continuous in-Semester Evaluation

	Program	m Elective -1		Program	n Elective - 2
S.No	Course Code	Course Title	S.No	Course Code	Course Title
1.	COCE5021T	Computer Network De-	1.	COCE5031S	Software Engineering
		sign			
2.	COCE5022T	Distributed Systems	2.	COCE5032S	Internet of Things
3.	COCE5023T	Computer Systems Per-	3.	COCE5033S	GPU Architecture and
		formance Analysis			programming
4.	COCE5024T	Social Network Analysis	4.	COCE5034S	Graph Mining

		Open Elective - 1
S.No	Course Code	Course Title
1.	COCE5061S	Database Management Systems
2.	COCE5062S	Data Structure
3.	COCE5063S	Data Science

MTech Computer Engineering Scheme of Instruction and Evaluation SEMESTER II

		Scheme of Instruction				Schem	e of Eva	aluation
S.No	Course Code	Course Title	L-T-P	Credits	TA	IST	ESE	ESE hours
1	COCE5002S	Research Methodology and	3-0-0	3	20	20	60	3
		IPR (Mandatory Learning)						
2	COCE5013T	Big Data Analytics (Core-3)	3-1-0	4	20	20	60	3
3	COCE5014S	Soft computing (Core-4)	3-0-0	3	20	20	60	3
4	COCE5041T	Program Elective -3	3-1-0	4	20	20	60	3
5	COCE5051S	Program Elective - 4	3-0-0	3	20	20	60	3
6	COCE5062S	Open Elective - 2	3-0-0	3	20	20	60	3
7	COCE5074L	Devops (Laboratory-4)	0-0-2	1	60%	ÓCIE	40	-
8	COCE5075L	Deep Learning (Laboratory-	0-0-2	1	60%	CIE	40	-
		5)						
9	COCE5076L	Big Data Analytics (Labora-	0-0-2	1	60%	CIE	40	-
		tory -6)						
10	MTEC082L	Liberal Learning-2	0-0-2	1	100%	%CIE	—	-
			28	24				

Abbreviations: S: Standalone, T: Standalone with Tutorial, L: Laboratory TA: Teachers Assessment / Term work Assessment, MST: Mid Semester Test, ESE: End Semester written Examination, CIE: Continuous in-Semester Evaluation

	Program	m Elective -3		Program	n Elective - 4
S.No	Course Code	Course Title	S.No	Course Code	Course Title
1.	COCE5041T	Network administration	1.	COCE5051S	Network Security
2.	COCE5042T	Ad-hoc Network	2.	COCE5052S	Blockchain Technology
3.	COCE5043T	Software Project Manage-	3.	COCE5053S	Parallel Algorithms
		ment			
4.	COCE5044T	Software Architecture	4.	COCE5054S	Software Defined Network

		Open Elective - 2
S.No	Course Code	Course Title
1.	COCE5065S	Human Computer Interaction
2.	COCE5066S	Machine Learning

MTech Computer Engineering Scheme of Instruction and Evaluation SEMESTER III

		Scheme of Instruction			Scheme of Evalua-
					tion
S.No	Course Code	Course Title	L-T-P	Credits	
1	COCE5091D	Skill Based Course (Project		5	100%CIE
		Stage -I)			
2	COCE5092D	Skill Based Course (Project		5	100%CIE
		Stage -II)			
3	COCE5101S	Self-Learning Course -1		1	100% ESE of 3
					hours or credit
					transfer
4	COCE5201S	Self-Learning Course -2		1	100% ESE of 3
					hours or credit
					transfer
5	COCE5201MNC	Mandatory Non-Credit	—	0	100% ESE of 3
		Course			hours or credit
					transfer
				12	

Scheme of Instruction and Evaluation SEMESTER IV

		Scheme of Instruction			Scheme of Evalua-
					tion
S.No	Course Code	Course Title	L-T-P	Credits	
1	COCE5093D	Skill Based Course (Project		5	100%CIE
		Stage -III)			
2	COCE5093D	Skill Based Course (Project		7	100%CIE
		Stage -IV)			
				12	

Programme Name	M. Tech. Computer Engineering				
Course Code	COCE5001S				
Course Title	Computational Methods				
Course Type	Program Specific Mathematics				
Prerequisites: Fu	ndamental of computer science, discrete mathematics				
and probability the	and probability theory and statistics.				
Course Outcome	s: At the end of the course student will be able to:				
CO1. Analyze mat	thematical models and methods using proofs.				
CO2. Apply numb	er theory principles for real world problems.				
CO3. Demonstrate	e counting usage in computer applications.				
CO4. Illustrate pr	obability principles for addressing randomness in the				
applications.					
CO5. Practice rect	urrence in real life problems.				
COC D. 1					

CO6. Design advanced graph theoretic algorithms.

	Course Contents	Hrs.	CO
1.	Introduction to proofs: Propositions, Predicates,	8	CO1
	Axiomatic Method, Proof by Cases, Proof by Contradic-		
	tion, Well Ordering Proofs, Propositional Logic, Equiv-		
	alence and Validity, Algebra of Propositions, Proof by		
	Induction		
2.	Number Theory: Divisibility, Modular Arithmetic,	6	CO2
	Multiplicative Inverses, Euler's Theorem, RSA Public		
	Key Encryption		
3.	Counting: Sums and Asymptotics, Counting Se-	6	CO3
	quences, Counting Subsets, Pigeonhole Principle,		
	Inclusion-Exclusion, Combinatorial Proofs, Generating		
	Functions		
4.	Probability: Events and Probability Spaces, Condi-	8	CO4
	tional Probability, Random Variables, Random Walks		
5.	Recurrences: Linear Recurrences, Divide-and-	6	CO5
	Conquer Recurrences		
6.	Directed graphs and Partial Orders: Vertex De-	6	CO6
	grees, Walks and Paths, Directed Acyclic Graphs and		
	Scheduling, Partial Orders, Equivalence Relations		

Te	xt Books
1.	Kolman, Bernard, Robert C. Busby, and Sharon Ross.
	Discrete mathematical structures. Prentice-Hall, Inc.,
	1995.
2.	Cormen, Thomas H., Charles E. Leiserson, Ronald L.
	Rivest, and Clifford Stein. Introduction to algorithms.
	MIT press, 2022.
Re	ference Books
1.	Lehman, Eric, Tom Leighton, and Albert R. Meyer.
	Mathematics for computer science. Technical report,
	2006. Lecture notes, 2010.

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5011T	
Course Title	Advanced Algorithms	
Course Type	Core Subject	
Prerequisites: Fu	ndamental of computer science, discrete mathematics	
and probability the	ory and statistics.	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Analyze algorithms and determine efficiency of algorithm.		
CO2. Design analysis algorithms using the greedy, dynamic program-		
ming, and divide and conquer techniques.		
CO3. Design and l	build solutions for a real world problem using graphs.	
CO4. Prove problems of P, NP, or NP-Complete.		
CO5. Demonstrate geometric algorithms usage in real life problems.		
CO6. Illustrate advanced algorithms techniques for NP Complete prob-		
lems.		

	Course Contents	Hrs.	CO
1.	Introduction: Asymptotic notation, recurrences,	6	CO1
	amortized analysis		
2.	Algorithm design techniques: Greedy algorithms,	8	CO2
	divide-and-conquer algorithms, dynamic programming		
3.	Graph algorithms: Traversal, topological sort, min-	8	CO3
	imum spanning trees, shortest path, biconnected com-		
	ponents, strongly connected components in directed		
	graphs, network flow		
4.	NP-completeness: Classes P, NP and space com-	6	CO4
	plexity, reduction, NP-completeness, examples of NP-		
	complete problems		
5.	Geometric algorithms: Convex hulls, sweep	6	CO5
	paradigm, Voronoi diagrams, closest pair, nearest neigh-		
	bour search.		
6.	Approximation Algorithms: Approximation algo-	6	CO6
	rithms for known NP complete problems		

Te	Text Books		
1.	Kleinberg, Jon, and Eva Tardos. Algorithm design. Pearson Educa-		
	tion India, 2006.		
2.	Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and		
	Clifford Stein. Introduction to algorithms. MIT press, 2022.		
Re	Reference Books		
1.	Aho, A., J. Hopcroft, and J. Ullman. "The Design and Analysis of		
	Algorithms. Addison and Wesley." Reading, MA (1974).		

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5012S	
Course Title	Cloud Computing	
Course Type	Program Core	
Prerequisites: Op	perating system	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Describe cloud computing concepts, architecture, deployment		
model and other cloud terminologies		
CO2. Use various aspects of SLA, workout cloud economics.		
CO3. Apply security features of cloud.		
CO4. Distinguish various special purpose cloud.		
CO5. Use and Create private cloud.		
CO6. Design solution using cloud services.		

	Course Contents	Hrs.	CO
1.	Introduction: Cloud Computing – Overview, Cloud	6	CO1
	Computing – Introduction, Evolution of Cloud Com-		
	puting, Cloud Computing Architecture, Cloud Architec-		
	ture - Deployment Models, , Virtualization, XML Ba-		
	sics, Web Services, Service Oriented Architecture		
2.	Service Level Agreement (SLA): SLA – Tutorial	8	CO2
	(problems), Economics, Economics Tutorial (problems),		
	Managing Data, Introduction to Map Reduce, Map Re-		
	duce – Tutorial (problem), Resource Management in		
	cloud		
3.	Openstack Cloud: Detail Study of openstack cloud,	8	CO5
	Deployment/ implementation of Openstack cloud as pri-		
	vate cloud, OpenStack Major Components, Architecture		
	of Openstack, Openstack Work Flow, Nova scheduler fil-		
	tering, OpenStack Storage Concepts Study of other ser-		
	vices		
4.	Cloud Types: Broker for Cloud Marketplace, Fog	4	CO4
	Computing, Use Case Geospatial Cloud, Green Cloud,		
	Sensor Cloud Computing, IoT Cloud		

5.	Cloud Security: Security - Basic Components, Security Attacks, Classes of Threats, Policies and Mechanisms, Goals of Security, Trust and Assumptions, Types of Mechanisms, Assurance, Operational Issues, Passive and Active Attacks, Security Services.	8	CO3
6.	Cloud Platforms study: Case study of public cloud like AWS, Microsoft Azure, Google cloud GCP, Study and use of various services. Cloud Migration, Docker container, Serverless Computing, Dew computing	6	CO6

Te	Text Books		
1.	Arshdeep Bahga , Vijay Madisetti, Cloud Computing: A Hands-On		
	Approach. Universities Press.		
Re	Reference Books		
1.	Buyya, Rajkumar, Christian Vecchiola, and S. Thamarai Selvi. Mas-		
	tering cloud computing: foundations and applications programming.		
	Newnes, 2013.		

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5061S	
Course Title	Database Management Systems	
Course Type	Open Elective	
Prerequisites: Ni		
Course Outcomes: At the end of the course student will be able to:		
CO1. Differentiate various database architectures.		
CO2. Design and implement relational databases.		
CO3. Execute MongoDB commands to manipulate data.		
CO4. Use advanced XML queries on database.		
CO5. Apply practices of implementing database security.		
CO6. Perform transaction processing and achieve concurrency control.		

	Course Contents	Hrs.	CO
1.	Introduction to Database Management Systems	4	CO1
	and Enhanced Data Models for Advanced Appli-		
	cations: Characteristics of database, Database users,		
	Advantages of DBMS, Data Models, Schema and In-		
	stances, Three schema Architecture and Data Inde-		
	pendence, Database Languages and Interfaces, The		
	Database System Environment, Centralized and Client		
	/ Server Architecture for DBMS. Introduction to Tem-		
	poral Database and Multimedia Databases.		
2.	Relational-Database Design and SQL: Functional	8	CO2
	dependencies, Normalisation forms, Decomposition,		
	Overall database design process. SQL: DDL: Create,		
	Modify, Alter, Drop, View definition, etc.DML: SE-		
	LECT, INSERT, DELETE, Update, Nested Query, SQL		
	with SET operations: Union, Intersect, Except, etc, Ag-		
	gregate Functions: Group By, Having, SUM, etc, SQL		
	with Logical operations, Nested and Complex Queries,		
	Join Queries. DCL : GRANT, REVOKE, etc DBA level		
	query. Cursors and Triggers, Procedures and Functions,		
	Partitions, SQL Backup and Recovery.		

<u></u>	Later least and N. COL Databases I. ()	0	COD
3.	Introduction to NoSQL Databases: Introduction,	8	CO3
	Design of parallel systems, Parallel query processing.		
	Avenues for parallelism, Array and vector processors.		
	Multiprocessor architecture: taxonomy of parallel archi-		
	tectures, Parallel Query Evaluation. Advanced Transac-		
	tion Processing Non-relational DBMS: consistency and		
	availability trade-offs, NoSQL DBMS (key-value, docu-		
	ment, and graph), MongoDB: CRUD operations.		
4.	XML Databases: Introduction to XML Documents	6	CO4
	and Databases, XML schemas, tree structure, and		
	DOM, XML Query.		
5.	Database Security: Introduction to major database	4	CO5
	attacks: SQL Injection, DoS/DDoS etc. Encryption and		
	Public Key Infrastructures.		
6.	Transaction Processing and Concurrency Con-	8	CO6
	trol: Schedules and serializability, Lock management,		
	Compensation and Databases, Deadlock Handling, Mul-		
	tiple granularity, validation protocols, multi-version pro-		
	tocols, snap shot isolation, predicate locking, Weak Lev-		
	els of Consistency in Practice.		

Te	xt Books
1.	Elmasri, Navathe. Fundamentals of Database Management systems,
	Pearson Education, 2008.
2.	Avi Silberschatz, Henry F. Korth, S. Sudarshan. Database System
	Concepts, Seventh Edition, McGraw-Hill, 2010.
3.	P. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the
	Emerging World of Polyglot Persistence, Addison Wesley, 2012.
Re	ference Books
1.	Thomas Connolly and Carolyn Begg, "Database Systems" 3rd Edi-
	tion, Addison-Wesley, 2005.
2.	V.S. Subrahmanian, "Multimedia database systems", Springer, 1996.

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5063S	
Course Title	Data Science	
Course Type	Open Elective	
Prerequisites: Ni	1.	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Describe a fl	low process for data science problems.	
CO2. Classify data science problems into standard typology		
CO3. Develop R codes for data science solutions		
CO4. Correlate results to the solution approach followed.		
CO5. Assess the solution approach		
CO6. Construct use cases to validate approach and identify modifica-		
tions required.		

	Course Contents	Hrs.	СО
1		4	CO1
1.	Foundations Linear algebra for data science: Al-	4	COI
	gebraic view - vectors, matrices, product of matrix and		
	vector, rank, null space, solution of over- determined		
	set of equations and pseudo-inverse) Geometric view		
	- vectors, distance, projections, eigenvalue decomposi-		
	tion.		
2.	Statistics: descriptive statistics, notion of probabil-	8	CO2
	ity, distributions, mean, variance, covariance, covari-		
	ance matrix, understanding univariate and multivariate		
	normal distributions, introduction to hypothesis testing,		
	confidence interval for estimates		
3.	Optimization Techniques: Optimization, Typology	8	CO3
0.	of data science problems and a solution framework		000
	of data science problems and a solution framework		
4.	Regressions: Simple linear regression and verifying as-	6	CO4
	sumptions used in linear regression, Multivariate linear		00-
	regression, model assessment, assessing importance of		
	different variables, subset selection.		
5.	Classification: Classification using logistic regression,	4	CO5, CO6
	kNN and k-means clustering		

1.	Ragunathan Rengasamy and Shankar Narasimhan, Data Science for	
	Ragunathan Rengasamy and Shankar Narasimhan , Data Science for Engineering , Computer Science ³ and Engineering, IIT Madras.	
2.	Reema Thareja, Data Science and Machine Learning using Python	
	McGrawHill Publication, 2021	
Re	Reference Books	
1.	Avi Silberschatz, Henry F. Korth, S. Sudarshan. Database System Concepts, Seventh Edition, McGraw-Hill, 2010.	
	Concepts, Seventh Edition, McGraw-Hill, 2010.	

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5062S	
Course Title	Data Structure	
Course Type	Open Elective	
Dronoquisitos, Nil		

Prerequisites: Nil.

Course Outcomes: At the end of the course student will be able to: **CO1.** Apply basic data structures such as various linear and nonlinear data structures, CO2. CO3. CO4.

CO2. Analyse use of basic data structures in different applications and implement various applications and solve exercises using appropriate data structures.

CO3. Evaluate methods for analysis of algorithms, learn, analyze and implement different searching and sorting techniques and their implementation

CO4. Understand and apply fundamental algorithmic problems including Tree traversals, Graph theory and hashing techniques

	Course Contents	Hrs.	CO
1.	Introduction to Data structures and Analysis of	8	CO1
	Algorithms: Need of data structures, Types of data		
	structures, recursion, ADT (Abstract Data Types). Ba-		
	sics of algorithm, analysis of algorithm through time		
	complexity and space complexity, asymptotic notations,		
	pseudo code analysis, various examples to show time		
	complexity calculation. Recurrence Relations and Solv-		
	ing Recurrences Using Substitution, Recursion Tree and		
	Master Method		
2.	Stack and Queue: Stack: The stack as an ADT, Rep-	8	CO2
	resentation, Stack operation, Application.		
	Queue: The Queue as an ADT, Representation, Queue		
	operation, Circular and Priority queue, Applications.		
3.	Linked List: Linked list as an ADT, Operation on	8	CO3
	linked list, Linked stacks and Queues, Array implemen-		
	tation of Linked List, Linked list using Dynamic Vari-		
	able, Doubly, circular linked list.		

4.	Binary Tree: Basic tree concept, Binary tree opera- tions, Binary tree representation, Binary tree traversals , Binary search tree and operations on it, balanced tree: AVL trees and operations, applications of these binary trees and exercises on it. Implementing priority queue using binary heap data structure.	6	CO4
5.	Graphs: Basics concepts of graphs, representation of graphs, graph traversals BFS and DFS, minimum spanning tree algorithms: Kruskal's algorithm and Prim's algorithm, application and related exercises in brief.	4	CO5
5.	Searching Techniques and Hashing: Linear Search and Binary Search, Hashing: Direct-address tables, Hash tables, open addressing, Perfect Hashing, Sort- ing techniques: Various sorting methods and their time complexity analysis: Insertion sort, selection sort, merge sort, quick sort, heap sort,	4	CO6

Te	Text Books			
1.	Y. Langsam, M. J.Augenstein and A. M. Tanenbaum "Data struc-			
	tures using Java", Second edition 2007 Pearson Education			
2.	T. H. Cormen, C. E. Leiserson, R. L.Rivest and C. Stein, "Introduc-			
	tion to Algorithms", Third Edition, MIT Press/McGraw Hill.			
3.	Goodrich and Tamassia, Data Structures and Algorithm in Java,			
	John Wiley and Sons, Sixth Edition 2014			
Re	Reference Books			
1.	Avi Silberschatz, Henry F. Korth, S. Sudarshan. Database System			
	Concepts, Seventh Edition, McGraw-Hill, 2010.			

Programme Name	M. Tech. Computer Engineering		
Course Code	COCE5071L		
Course Title	Laboratory-1: Cloud Computing		
Course Type	Laboratory		
Prerequisites: Ni	l.		
Course Outcome	s: At the end of the course student will be able to:		
CO1. Create Vir	CO1. Create Virtual machines and use IaaS services of cloud like		
AWS/Azure/GCP			
CO2. Design and deploy a web application using Pass facility			
CO3. Create and use Container instances, Virtual Network, Object			
Storage, Databases			

It is expected to conduct 8-10 experiments in the field of knowledge. One				
hour sha	hour shall be tutored about theory and relevant tools to the students,			
and stud	and students shall perform the experiment. This is continuous evaluation,			
hence al	experiments shall be evaluated in the same week. A sample list			
of experi	iments is given it may be altered as and when required.			
Sr. No.	Course Contents			
1.	Create a Virtual Machine in the Portal			
	(AWS/Azure/Google)			
2.	Create a Web App (AWS/Azure/Google)			
3.	Deploy Container Instances (AWS/Azure/Google)			
4.	Create a Virtual Network (AWS/Azure/Google)			
5.	Create Object Storage (AWS/Azure/Google)			
6.	Create a Database (AWS/Azure/Google)			
7.	Implement an Azure IoT Hub /AWS IoT Core/Google			
	IoT			
8.	Implement Azure Functions /AWS Lamda /Google			
	serverless			
9.	Create a VM with a Template			
10.	Create a VM with PowerShell / Command Line			

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5072L	
Course Title	Laboratory-2: Software Testing	
Course Type	Laboratory	
Prerequisites: So	ftware Engineering.	
Course Outcome	s: At the end of the course student will be able to:	
CO1. To provide k	mowledge of Version control system using GitHub.	
CO2. To provide knowledge of Software Testing Methods.		
CO3. To develop skills in software test automation and management		
using latest tools.		

It is expected to conduct 8-10 experiments in the field of knowledge. One			
hour sha	hour shall be tutored about theory and relevant tools to the students,		
and stud	and students shall perform the experiment. This is continuous evaluation,		
hence al	hence all experiments shall be evaluated in the same week. A sample list		
of exper	of experiments is given it may be altered as and when required.		
Sr. No.	Course Contents		
1.	Create GitHub Repository, Clone sample project and		
	Create new branch		
2.	Update given code and committee your code changes		
3.	Prepare software test plan for the software		
4.	Write Unite test cases and carryout functional testing		
	of the software		
5.	Execute test cases for Structural testing of the software		
	and prepare code coverage report		
6.	Generate automated test cases using tools like selenium		
7.	Generate regression test case suite for the software		
8.	Generate regression test test report for the software		
9.	Generate stress test test report using JMeter for the		
	software		
10.	Generate Quality Assurance Plan for the software		

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5073L	
Course Title	Laboratory-3: Cross Platform App Development	
Course Type	Laboratory	
Prerequisites: Software Engineering, Web Development.		
Course Outcomes: At the end of the course student will be able to:		

CO1. Analyse the solutions for cross-platform design and development challenges

CO2. Analyse components for user interface design

CO3. Implement data and program flow for complex application.

CO4. Integrate Rest APIs and deploy on various platforms.

It is expected to conduct 8-10 experiments in the field of knowledge. One			
hour sha	hour shall be tutored about theory and relevant tools to the students,		
and students shall perform the experiment. This is continuous evaluation,			
hence all	hence all experiments shall be evaluated in the same week. A sample list		
of experi	iments is given it may be altered as and when required.		
Sr. No.	Course Contents		
1.	Designing user interface and wireframe for multiple lay-		
	outs using Figma.		
2.	Setting up the development environment of React Na-		
	tive and .NET MAUI on Windows and building first		
	simple application.		
3.	Programs regarding concepts of JavaScript, JSX, XAML		
	and $C#$.		
4.	Basic user interface design using react components,		
	Stylesheet, Flexbox and XAML, manipulation of com-		
	ponents using States and Props.		
5.	Adding user interactivity in the base components and		
	customization of layout using functions provided by Re-		
	act Native and XAML.		
6.	Integrating third party components into our application		
	and XAML pages using shared resources.		
7.	Implementing multiple screen navigation and nested		
	navigation using solutions provided by React Naviga-		
	tion and .NET MAUI.		

8.	Implementing data communication between multiple
	screens using props and call-back functions.
9.	Implementation of asynchronous functions and outside
	API calls in JavaScript, react Native and .NET MAUI.
10.	Exploration of life cycle functions for components, hook
	functions and XAML pages.
11.	Implementation and integration with firebase backend
	and application deployment.

Programme Name	M. Tech. Computer Engineering (Specialization in			
	Network Infrastructure and Management Systems)			
Course Code	COCE5021T			
Course Title	Computer Network Design			
Course Type	Program Elective			
Prerequisites: Ni	1.			
Course Outcome	s: At the end of the course student will be able to:			
CO1. Apply networking tools and techniques to design computer net-				
work.				
CO2. Evaluate Transport Layer protocols for Quality of Service (QoS).				
CO3. Examine Network Layer services and Protocols.				
CO4. Recommend Application Protocols as per need of application.				
CO5. Categorize various network security flaws.				
CO6. Design and deploy computer network as per customer require-				

ment.

	Course Contents	Hrs.	CO
1.	Computer Network Design Foundation: Intro-		
	duction to Networking: Comparison between OSI and		
	TCP/IP Protocol Suite, IP addressing, Cables, Re-		
	peaters, Bridges, Routers, Switches, Hubs, Gateway,		
	VLANS, Network Design Case studies.		
	Designing Secure Networks: Device hardening net-	6	CO1,
	work security platform options and best deployment		CO6
	practices, common application design considerations,		
	Identity design consideration, IPsec VPN design con-		
	sideration, Network Design Case studies.		
2.	Transport Layer: Introduction, Transport Layer Pro-	10	CO2,
	tocols, Congestion Control and Quality of Service User		CO6
	Datagram Protocol (UDP), Transmission Control Pro-		
	tocol (TCP), Stream Control Transmission Protocol		
	(SCTP)		
3.	Network Layer: Introduction, packet format, IPV4	7	CO3,
	addresses, Internet protocol Version 4(IPV4), IPV6, Ad-		CO6
	dress resolution protocol (ARP), Reverse address resolu-		
	tion protocol (RARP), Internet control Message proto-		
	col (ICMP), Real time transport protocol (RTP), RTP		
	control protocol (RTCP), VOICE OVER IP etc		

4.	Routing Protocols: Unicast Routing Protocols (RIP,	7	CO3,
	OSPF, and BGP), Multicasting and Multicast Routing		CO6
	Protocols, RIP (Routing information protocol), OSPF		
	(Open shortest path first), BGP (Border gateway pro-		
	tocol), Internet group management protocol (IGMP)		
5.	Application Layer Protocols: Introduction, Host	5	CO4,
	Configuration: BOOTP and DHCP, Domain Name Sys-		CO6
	tem (DNS), TELNET and SSH, File Transfer: FTP and		
	TFTP, SNMP		
6.	Applications of Secure Computer Network: Se-	4	CO5
	curity policy and operation life cycle, Internet Security:		
	Security aspects in Network Layer, Transport Layer, and		
	Application Layer, working of Firewalls,		
	Advances in the domain	4	CO5

Te	xt Books		
1.	Behrouz A. Forouzan, "TCP/IP Protocol Suite", III Edition, Tata		
	McGraw Hill, 2005		
2.	Behrouz A. Forouzan, "Data Communications and Networking",		
	Tata McGraw-Hill, Fourth Edition		
Re	Reference Books		
1.	W. Richard Stevens, "TCP/IP Illustrated, Volume 1", Addison-		
	Wesley, Second Edition		
2.	Internetworking with TCP-IP: Design, Implementation, and Inter-		
	nals, by D. E. Comer and D. L. Stevens Vol II, Prentice Hall.		

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5022T
Course Title	Distributed Systems
Course Type	Program Elective

Prerequisites: Operating Systems, Computer Networks.

Course Outcomes: At the end of the course student will be able to: **CO1.** Illustrate fundamental concepts of distributed systems.

CO2. Demonstrate synchronization principles for real world problems in distributed systems.

CO3. Distinguish different middle-ware technologies in computer distributed applications.

CO4. Examine shared data operations and replication in the distributed applications.

CO5. Inspect distributed systems with case studies.

CO6. Design advanced graph theoretic algorithms.

	Course Contents	Hrs.	CO
1.	Foundations: Examples of distributed systems, Archi-	9	CO1
	tectural models, Network principles, Multi-cast commu-	-	
	nication, Network virtualization, Message passing in-		
	terface (MPI), Request-reply protocols, Remote pro-		
	cedure call (RPC), Remote method invocation (RMI),		
	group communication, publish-subscribe systems, mes-		
	sage queue systems, shared memory–based approaches.		
2.	Synchronization and Coordination of Dis-	8	CO2
	tributed Systems: Clocks, events and process states,		001
	Synchronizing physical clocks, Logical time and logi-		
	cal clocks, Global states, Distributed mutual exclusion,		
	Elections, Coordination and agreement in group com-		
	munication, Consensus and related problems		
3.	Middle-ware Components: Distributed objects,	6	CO3
0.	CORBA, Distributed components, Enterprise Jav-		000
	aBeans and Fractal, Web services, Coordination of web		
	services, Peer-to-peer middleware, Routing overlays,		
	Overlay case studies: Pastry, Tapestry		
	Overlay case studies. I astry, rapestry		

	-	<u> </u>
Distributed Shared Data: Distributed mutual exclu-	9	CO4
sion, Elections, Coordination and agreement in group		
communication, Consensus, Transactions, Nested trans-		
actions, Locks, Optimistic concurrency control, Times-		
tamp ordering, Flat and nested distributed transac-		
tions, Atomic commit protocols, Concurrency control in		
distributed transactions, Distributed deadlocks, Trans-		
action recovery, System model and the role of group		
communication, Fault-tolerant services, Case studies of		
highly available services: The gossip architecture, Bayou		
and Coda, Transactions with replicated data		
Distributed Systems: Overview of security tech-	6	CO5
niques, Case studies: Needham–Schroeder, Kerberos,		
TLS, 802.11 WiFi, File service architecture, Case study:		
Sun Network File System, Case study: The Andrew File		
System, Name services and the Domain Name System,		
Directory services, Case study: The Global Name Ser-		
vice, Case study: The X.500 Directory Service		
Designing Distribute Systems: Introducing the case	3	CO6
study: Google, Overall architecture and design philoso-		
phy, Underlying communication paradigms, Data stor-		
age and coordination services, Distributed computation		
services		
	communication, Consensus, Transactions, Nested trans- actions, Locks, Optimistic concurrency control, Times- tamp ordering, Flat and nested distributed transac- tions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Trans- action recovery, System model and the role of group communication, Fault-tolerant services, Case studies of highly available services: The gossip architecture, Bayou and Coda, Transactions with replicated data Distributed Systems: Overview of security tech- niques, Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi, File service architecture, Case study: Sun Network File System, Case study: The Andrew File System, Name services and the Domain Name System, Directory services, Case study: The Global Name Ser- vice, Case study: The X.500 Directory Service Designing Distribute Systems: Introducing the case study: Google, Overall architecture and design philoso- phy, Underlying communication paradigms, Data stor- age and coordination services, Distributed computation	sion, Elections, Coordination and agreement in group communication, Consensus, Transactions, Nested trans- actions, Locks, Optimistic concurrency control, Times- tamp ordering, Flat and nested distributed transac- tions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Trans- action recovery, System model and the role of group communication, Fault-tolerant services, Case studies of highly available services: The gossip architecture, Bayou and Coda, Transactions with replicated data Distributed Systems: Overview of security tech- niques, Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi, File service architecture, Case study: Sun Network File System, Case study: The Andrew File System, Name services and the Domain Name System, Directory services, Case study: The Global Name Ser- vice, Case study: The X.500 Directory Service Designing Distribute Systems: Introducing the case study: Google, Overall architecture and design philoso- phy, Underlying communication paradigms, Data stor- age and coordination services, Distributed computation

Te	Text Books		
1.	George Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed		
	George Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed Systems Concepts and Design", 5th ed., Pearson Education, 2011.		
2.	Ghosh, Sukumar. Distributed systems: an algorithmic approach.		
	Chapman and Hall/CRC; 2nd edition 2014.		
Re	Reference Books		
1.	Van Steen, Maarten, and Andrew S. Tanenbaum. Distributed sys-		
	tems. Leiden, The Netherlands: Maarten van Steen, 2017.		

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5023T
Course Title	Computer Systems Performance Analysis
Course Type	Program Elective

Prerequisites: Operating Systems, Computer Networks, and Probability and Statistics.

Course Outcomes: At the end of the course student will be able to:

CO1. Evaluate the performance of the various computer systems and networks, mistakes commonly observed in performance evaluation projects and a proper methodology to avoid them.

CO2. Illustrate performance metrics and analyze them mathematically, analytically or through simulation.

CO3. Illustrate the application of probability functions and distributions for computer systems.

CO4. Design mathematical models using Queuing Networks models and use programming languages to simulate and evaluate the performance of various computer systems within or outside the network.

CO5. Evaluate the performance of network systems by using various queuing models.

CO6. Analyze the performance evaluation of various protocols, algorithm in an network environment.

	Course Contents	Hrs.	CO
1.	Overview of Performance Evaluation: Introduc-	10	CO1
	tion, common mistakes and how to avoid them, selection		
	of techniques and metrics.		
2.	Measurement Techniques and Tools: Types of	10	CO2
	workloads, the art of workload selection, workload		
	characterization and techniques, monitors, program-		
	execution monitors and accounting logs, capacity plan-		
	ning and bench-marking, the art of data presentation.		
3.	Probability Theory and use for Evaluation: In-	6	CO3
	troduction to probability refresher, conditional proba-		
	bility, total probability, discrete and continuous random		
	variables, common distributions, probability generating		
	functions(pgf) and Laplace transforms (lst), numerous		
	examples from computer networking, Commonly used		
	distributions.		

4		4	COL
4.	Queuing Theory : Queuing models, little theorem ap-	4	CO4
	plication, stochastic processes, Markov chain formula-		
	tion, discrete time and continuous time markov chains		
	(dtmc, ctmc), MMD, Operational laws.		
5.	Queuing System Models and Application: Queu-	6	CO5
	ing system m/m/1, m/m/1/k, m/m/s/, m/m/y queue		
	analysis m-server case. Multidimensional markov chain		
	application in circuit switching/g/1 queue, generaliza-		
	tion of $m/g/1$ theory application to atm, embedding in-		
	stants in the $m/g/1$ theory $m/g/1$ with geometrically		
	distributed messages. chain embedded to cell transmis-		
	sion, message transmission completion. queue balance		
	equation, finite buffer case, mean value analysis.		
6.	Network Analysis: Local area Network analysis, stan-	3	CO6
	dard comment based analysis, contention based pro-		
	tocols, demand assignment protocols, nodes in packet		
	switches networks, performance analysis of data link		
	layer, Network layer. Traffic control and congestion in		
	ATM networks, TCP/IP Traffic control.		

Te	xt Books		
1.	Raj Jain, "The Art of Computer Systems Performance Analysis:		
	Techniques for Experimental Design, Measurement, Simulation, and		
	Modeling", Wiley-Interscience, 1991.		
Re	Reference Books		
1.	K.S. Trivedi, "Probability and Statistics with Reliability, Queueing		
	and Computer Science Applications", John Wiley and Sons, 2001.		
2.	Ross, Sheldon M. Introduction to probability models. Academic		
	press, 2014.		

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5024T
Course Title	Social Network Analysis
Course Type	Program Elective

Prerequisites: Analysis of Algorithm, Computer Networks, Data Mining.

Course Outcomes: At the end of the course student will be able to: **CO1.** Illustrate sociology and anthropology used the ideas of culture

and cultural formation concepts of Social Network Analysis. **CO2.** Demonstrate statistical properties for real world problems in So-

cial Network Analysis.

CO3. Distinguish different edge classification techniques and use in the application.

CO4. Examine shared data operations and replication in the distributed applications.

CO5. Inspect data mining in Social Network Analysis with case studies.CO6. Design advanced graph theoretic algorithms.

	Course Contents	Hrs.	CO
1.	Foundations: Introduction to new science of networks;	6	CO1
	Networks examples; Sociometry, small groups, and com-		
	munities; Cliques, roles, and matrices; Space and dis-		
	tance; Dynamics and social change		
2.	Statistical Properties of Social Network: Graph	8	CO2
	concepts and properties; static and dynamic properties		
	of social graphs; RandomWalk based Proximity Mea-		
	sures; other proximity measures; Graph-theoretic Mea-		
	sures for Semi-supervised Learning; Algorithms for com-		
	puting the proximity measures; Applications using ran-		
	dom walks approach.		
3.	Community Discovery in Social Networks: Defin-	6	CO3
	ing communities; Core Methods: Quality Functions,		
	Kernighan-Lin(KL) algorithm, Agglomerative/Divisive		
	Algorithms, Spectral Algorithms, Multi-level Graph		
	Partitioning, Markov Clustering; Community Discov-		
	ery in Dynamic Networks, Heterogeneous Networks, Di-		
	rected Networks.		

4.	Node Classification in Social Networks: The Node	6	CO4
	Classification Problem; Problem Formulation; Local		
	Classifiers, Random Walk based classifier, Node Clas-		
	sification to Large Social Networks, Basic Methods,		
	Second-order Methods, Map-Reduce, Dissimilarity in		
	Labels, Edge Labeling, Label Summarization.		
5.	Data Mining in Social Media: Data Representa-	6	CO5
	tion, Event Maps, Social Networking Sites: Illustrative		
	Examples, Blogosphere: Illustrative Examples.		
6.	Visualizing Social Network: Visual Images, MDS	6	CO6
	and SVD to explore data, Exploratory Research, Vali-		
	dating a Model, Structural Visualization, Semantic and		
	Temporal Visualization, Statistical Visualization		

Te	xt Books
1.	Charu C. Aggarwal, "Social Network Data Analytics" Springer New
	York, NY, 2011.
2.	Carrington, P., Scott, J., Wasserman, S. (Eds.). Models and Meth-
	ods in Social Network Analysis (Structural Analysis in the Social
	Sciences). Cambridge: Cambridge University Press, 2005.
Re	ference Books
1.	Xiaoming Fu, Jar-Der Luo, Margarete Boos. Social Network Analysis
	Interdisciplinary Approaches and Case Studies.CRC Press, 2020.
2.	Carrington, Peter J., John Scott, and Stanley Wasserman, eds. Mod-
	els and methods in social network analysis. Vol. 28. Cambridge
	university press, 2005.

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5031S
Course Title	Software Engineering
Course Type	Program Elective

Prerequisites: Programming, basics of software engineering

Course Outcomes: At the end of the course student will be able to: **CO1.** Illustrate software development process and best practice for software development.

CO2. Demonstrate agile development principles and techniques to manage agile software developments.

CO3. Investigate requirements to generate software requirement document.

CO4. Apply component based design to real life applications.

CO5. Illustrate skills of software testing to projects.

CO6. Estimate cost of the project.

	Course Contents	Hrs.	CO
1			00
1.	Fundamentals of Software Engineering: software	3	CO1
	life-cycle process models, industry-standard software en-		
	gineering tools.		
2.	Agile Methods for Software Development	8	CO2
	Method: Extreme Programming (XP), Scrum, Lean,		
	Crystal, Dynamic Systems Development Method and		
	Feature-Driven Development.		
3.	Software Requirements Analysis and Engineer-	6	CO3
	ing: Identification of stakeholders, the elicitation and		
	verification of requirements from them, and translation		
	into detailed requirements		
4.	Software Architecture and Component-Based	8	CO4
	Design: software design process and it's models; soft-		
	ware architectures and design plans; design methods;		
	design state assessment; design quality assurance; and		
	design verification.		
5.	Software Testing and Quality Assurance: system-	8	CO5
	atic testing of software systems, software verification,		
	symbolic execution, software debugging, quality assur-		
	ance, measurement and prediction of software reliability.		

6.	Cost Estimation and Measurement: industry-	6	CO6
	standard software sizing metrics as Function, Feature,		
	and Object Points and their relationship to the lines-of-		
	code metric.		

Text Books

TC	Text Dooks	
1.	Roger Pressman. Software Engineering: A Practitioner's Approach	
	(7th. ed.). McGraw-Hill, Inc., USA. 2009.	
Re	Reference Books	
1.	Jalote, Pankaj. An integrated approach to software engineering.	
	Springer Science & Business Media, 2012.	
2.	Sommerville, Ian. Software Engineering, 9/E. Pearson Education	
	India, 2011.	

Programme Name	M. Tech. Computer Engineering		
Course Code	COCE5032S		
Course Title	Internet of Things		
Course Type	Program Elective		
Prerequisites:			
Course Outcome	s: At the end of the course student will be able to:		
CO1. Analyze the importance of various aspects of IoT.			
CO2. Apply different	CO2. Apply different tools for interoperability for IoT.		
CO3. Design different SDN for IoT.			
CO4. Analyze Data Handling and Analytics in IoT.			
CO5. Design and develop different application in IoT.			

CO6. Create different case studies in IoT.

	Course Contents	Hrs.	CO
1.	Fundamentals of Internet of Things: Introduc-	4	CO1
	tion to IoT, Sensing, Actuation, Basics of Networking,		
	Communication Protocols, Sensor Networks, Machine-		
	to-Machine Communications.		
2.	Interoperability in IoT: Introduction to Arduino Pro-	6	CO2
	gramming, Integration of Sensors and Actuators with		
	Arduino, Introduction to Python programming, Intro-		
	duction to Raspberry Pi.		
3.	Implementation of IoT: Implementation of IoT with	8	CO3
	Raspberry Pi, Introduction to SDN, SDN for IoT.		
4.	Data Handling in IOT: Data Handling and Analyt-	8	CO4
	ics, Cloud Computing, Cloud Computing, Sensor-Cloud,		
	Fog Computing.		
5.	Application of IOT: Connected Vehicles, Smart Grid,		CO5
	Industrial IoT. Challenges in Design and Development		
6.	Case Study: Agriculture, Healthcare, Activity Moni-		CO6
	toring.		

Text Books

1.	S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT.		
	Cambridge University Press.		
2.	S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial		
	Internet of Things and Industry 4.0. CRC Press.		
Re	Reference Books		
1.	Research Papers		

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5033S	
Course Title	GPU Architecture and Programming	
Course Type	Program Elective	
Prerequisites: Nil	l	
Course Outcomes: At the end of the course student will be able to:		
CO1. Describe concepts of the GPU architecture.		
CO2. Justify memory hierarchy and usage in parallel programming.		
CO3. Apply synchronization primitives in parallel programming.		
CO4. Justify data transfer through streams for parallel programs.		
CO5. Infer kernel functions for the real time systems.		
CO6. Illustrate case studies.		

Course Contents	Hrs.	CO
Introduction: Streaming Multi Processors, Cache	8	CO1
Hierarchy, The Graphics Pipeline History, Graphics		
processors, graphics processing units, Clock speeds,		
CPU/GPU comparisons, heterogeneity, Accelerators,		
Parallel programming, CUDA / OpenCL / OpenACC		
Memory Memory hierarchy, DRAM / global, local /	6	CO2
shared, private/local, textures, constant memory, Point-		
ers, parameter passing, arrays and dynamic memory,		
multi-dimensional arrays, Memory allocation, memory		
copying across devices, Programs with matrices, perfor-		
mance evaluation with different memories.		
Synchronization Memory consistency. Barriers (local	8	CO3
versus global), atomics, memory fence. Prefix sum, re-		
duction. Programs for concurrent data structures such		
as worklists, linked-lists. Synchronization across CPU		
and GPU. Warp Scheduling, Divergence		
Streams: Asynchronous processing, tasks, task-	6	CO4
dependence. Overlapped data transfers, default stream,		
synchronization with streams. Events, event-based-		
synchronization- overlapping data transfer and kernel		
execution, pitfalls.		
	 Introduction: Streaming Multi Processors, Cache Hierarchy, The Graphics Pipeline History, Graphics processors, graphics processing units, Clock speeds, CPU/GPU comparisons, heterogeneity, Accelerators, Parallel programming, CUDA / OpenCL / OpenACC Memory Memory hierarchy, DRAM / global, local / shared, private/local, textures, constant memory, Pointers, parameter passing, arrays and dynamic memory, multi-dimensional arrays, Memory allocation, memory copying across devices, Programs with matrices, performance evaluation with different memories. Synchronization Memory consistency. Barriers (local versus global), atomics, memory fence. Prefix sum, reduction. Programs for concurrent data structures such as worklists, linked-lists. Synchronization across CPU and GPU. Warp Scheduling, Divergence Streams: Asynchronous processing, tasks, task-dependence. Overlapped data transfers, default stream, synchronization- overlapping data transfer and kernel 	Introduction:Streaming Multi Processors, Cache8Hierarchy, The Graphics Pipeline History, Graphics processors, graphics processing units, Clock speeds, CPU/GPU comparisons, heterogeneity, Accelerators, Parallel programming, CUDA / OpenCL / OpenACC6Memory Memory hierarchy, DRAM / global, local / shared, private/local, textures, constant memory, Point- ers, parameter passing, arrays and dynamic memory, multi-dimensional arrays, Memory allocation, memory copying across devices, Programs with matrices, perfor- mance evaluation with different memories.8Synchronization Memory consistency. Barriers (local as worklists, linked-lists. Synchronization across CPU and GPU. Warp Scheduling, Divergence8Streams: Asynchronization with streams. synchronization with streams. Synchronization with streams. Synchronization with streams and kernel6

5.	Functions: Device functions, host functions, kernels,	8	CO5
	functors, Optimization examples : optimizing Reduc-		
	tion Kernels Optimization examples : Kernel Fusion,		
	Thread and Block OpenCL basics and OpenCL for Het-		
	erogeneous Computing Support: Debugging GPU pro-		
	grams. Profiling, profile tools, performance aspects		
6.	Advanced topics: Case studies, Dynamic Parallelism,	6	CO6
	Unified virtual memory, Multi-GPU processing, Peer ac-		
	cess, Heterogeneous processing		

Te	Text Books		
1.	Programming Massively Parallel Processors: A Hands-on Approach;		
	David Kirk, Wen-mei Hwu; Morgan Kaufman; 2016		
Re	Reference Books		
1.	CUDA Programming: A Developer's Guide to Parallel Computing		
	CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman; 2012		
2.	Heterogeneous Computing with OpenCL" – Benedict Gaster,Lee		
	Howes, David R. Kaeli		

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5034S
Course Title	Graph Mining
Course Type	Program Elective

Prerequisites: Fundamentals of probability and linear algebra.

Course Outcomes: At the end of the course student will be able to: **CO1.** Demonstrate deep knowledge of the fundamentals of graph matching, visualization and data mining.

CO2. Design and analyze the graph patterns for graph based application.

CO3. Finding topological frequent patterns from graph database.

CO4. Develop efficient and salable implementations of graph mining algorithms.

CO5. Design a decision tree based on chunkingless graph based induction for graph application.

CO6. Applying graph mining knowledge to design effective solution to real-life graph analytic problems

	Course Contents	Hrs.	CO
1.	Fundamentals of Graph Mining: Terminology,	4	CO1
	Graph Databases Graph Matching—Exact And Error-		
	Tolerant Methods And The Automatic Learning Of Edit		
	Costs : Introduction, Definitions and Graph Matching		
	Methods, Learning Edit Costs, Experimental Evalua-		
	tion. Graph Drawing Techniques, Examples of Visual-		
	ization Systems		
2.	Graph Patterns And The R-Mat Generator: Net-	8	CO2
	Mine and R-MAT, Experiments Discovery Of Frequent		
	Substructures : Introduction, Preliminary Concepts,		
	Apriori-based Approach, Pattern Growth Approach,		
	Variant Substructure Patterns, Experiments and Perfor-		
	mance Study DFS Approach (gSpan and others), Diag-		
	onal and Greedy Approaches, Constraint-based mining		
	and new algorithms, Mining Frequent Subgraphs.		

3.	Finding Topological Frequent Patterns From	6	CO3
	Graph Datasets: Frequent Pattern Discovery from		
	Graph Datasets, Problem Definitions, FSG for the		
	Graph-Transaction Setting, SIGRAM for the Single-		
	Graph Setting, GREW, Scalable Frequent Subgraph		
	Discovery Algorithm.		
4.	Unsupervised And Supervised Pattern Learning	6	CO4
	In Graph Data: Mining Graph Data Using Sub-		
	due, Comparison to Other Graph-Based Mining Al-		
	gorithms, Comparison to Frequent Substructure Min-		
	ing Approaches, Comparison to ILP Approaches Graph		
	Grammar Learning : Introduction, Related Work,		
	Graph Grammar Learning, Empirical Evaluation		
5.	Constructing Decision Tree Based On Chunk-	8	CO5
	ingless Graph-Based Induction: Graph-Based In-		
	duction Revisited, Problem Caused by Chunking in B-		
	GBI, Chunkingless Graph-Based Induction (Cl-GBI),		
	Decision Tree Chunkingless Graph-Based Links Between		
	Formal Concept Analysis And Graph Mining : Pre-		
	sentation, Basic Concepts and Notation, Formal Con-		
	cept Analysis, Extension Lattice and Description Lat-		
	tice Give Concept Lattice, Graph Description and Ga-		
	lois Lattice, Graph Mining and Formal Propositionaliza-		
	tion, Kernel Methods For Graphs : Introduction, Graph		
	Classification, Vertex Classification.		
6.	Applications of Graph Mining: Web mining, cen-	6	CO6
	trality analysis, Link analysis algorithms, graph cluster-		
	ing and community detection, Node classification and		
	Link prediction, Influential spreaders, Influence maxi-		
	mization, Geo-social and location based networks.		

Text Books		
1.	Diane J. Cook , Lawrence B. Holder, Mining Graph Data, Wiley	
	Publication, 2010.	
Reference Books		
1.	Deepayan Chakrabarti and Christos Faloutsos, Graph Mining: Laws,	
	Tools, and Case Studies, Synthesis Lectures on Data Mining and	
	Knowledge Discovery, Morgan & Claypool Publishers, 2012	
2.	Charu C. Agrawal, Haixun Wang, Managing and Mining Graph	
	Data, Springer, 2012.	

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5002S
Course Title	Research Methodology and IPR
Course Type	Program Core (Mandatory Learning)

Prerequisites: Nil.

Course Outcomes: At the end of the course student will be able to: **CO1.** Explore research and describe the research process and research methods.

CO2. Model and visualize the processes and requirements for conducting successful research.

CO3. Identify the requirement of report writing and apply over it.

CO4. Investigate and apply the basic aspects of the scientific conduct and publication ethics in order to demonstrate through software approach.

CO5. Apply knowledge in publication ethics and investigate misconduct for the exploration of required IT Acts in research project.

CO6. Able to present, review and publish on scientific paper work.

	Course Contents	Hrs.	CO
1.	Research Methods: Objectives of Research, Various	6	CO1
	Steps in Scientific Research, Types of Research; Re-		
	search Problem , Research Design , Survey Research ,		
	Case Study Research and hypothesis, Sampling , Mea-		
	surement and Scaling techniques , Methods of data col-		
	lection, Design of Survey and Experiments , Hypothesis		
	design		
2.	Computer Application in Research Methodol-	6	CO2
	ogy: C Data Processing and Modeling :Data process-		
	ing and Measures Mathematical model formulation for		
	queries using relational algebra, Design of software Ar-		
	chitecture ,Database design, Algorithm Design ,GUI de-		
	sign ,Model building and decision making , Probabil-		
	ity Distributions, Fundamentals of Statistical Analysis		
	and Inference, Correlation and Regression ,Classifica-		
	tion ,Clustering		

		0	COD
3.	Report writing: Structure and Components of Re-	6	CO3
	search Report, Types of Report, Layout of Research Re-		
	port, Writing research proposal ,Mechanism of writing		
	a research report, Performance evaluation and curve fit-		
	ting, Result declaration by various graphs and charts		
4.	Scientific conduct and publication ethics: Ethics	6	CO4
	with respect to science and research, Intellectual hon-		
	esty and research integrity, falsification, fabrication		
	and plagiarism., duplicate and overlapping publication,		
	salami slicing, Selective reporting and misinterpretation		
	of data, Best practices/standards setting initiatives and		
	guidelines: COPE, WAME, etc, Publication miscon-		
	ducts: definition, concept, problems that lead to un-		
	ethical behavior and vice versa, types, Violation of pub-		
	lications ethic, authorship and contribution ship, Iden-		
	tification of publication misconduct, complaints and ap-		
	peals,Software tools: Use of plagiarism tool like Tur-		
	nitin, Urkund, and other open-source software tool		
5.	Publication ethics and misconduct: Subject spe-	6	CO5
	cific ethical issues, FFP, authorship, Conflict of inter-	-	
	est,Complaints and appeals: examples and fraud from		
	India and abroad,IT Acts for handling misconduct.		
6.	Application Of Results and Ethics: Ethical is-	8	CO6
	sues, ethical committees, Commercialization, Code of		000
	Research Ethics Intellectual property Trademark rights		
	,Copyright,Patent,Plagiarism,royalty Databases Index-		
	ing databases, Citation databases: Web of science, Sco-		
	pus etc. Research Metrics:Impact factor of journal as		
	•		
	per citation report, SNIP, SJR, IPP, Cite score ,Met-		
	rics: h-index, i10-index, g-index, altmetrics		

Te	xt Books
1.	G.C.Ramamurthy, "Research Methodology", Dreamtech Publica-
	tions, 2015.
2.	C. R. Kothari, "Research Methodology: Methods and Techniques"
	fourth Edition, New Age International Publishers, New Delhi, 2019.
Re	ference Books
1.	A. Ravindran, K. M. Ragsdell, G. V. Reklaitis, "Engineering Opti-
	mization methods and applications", Second Edition, Wiley publica-
	tion, 2006.
2.	Donald R. Cooper, Pamela S. Schindler, "Business Research Meth-
	ods", eighth edition, Tata McGraw-Hill, 2006.
3.	MacIntyre, A., "A Short History of Ethics: a history of moral phi-
	losophy from the Homeric age to the 20th century", Second Edition,
	2003.

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5013T
Course Title	Big Data Analytics
Course Type	Program Core-III

Course TypeProgram Core-IIIPrerequisites:Database Management System, Java, Python, AI, Machine Learning.

Course Outcomes: At the end of the course student will be able to: **CO1.** Analyse the important components of big data.

CO2. Illustrate different components in Hadoop and MapReduce.

CO3. Develop problem solving skills like Collect, manage, store, query, and analyze various forms of Big Data using NoSQL.

CO4. Solve different problems using data streaming in big data analytics.

CO5. Apply adequate perspectives of big data analytics in various applications like recommender systems and social media applications. **CO6.** Analyse spark framework of big data analytic.

	Course Contents	Hrs.	CO
1.	Introduction to Big Data and Hadoop: Introduc-	4	CO1
	tion to Big Data, Big Data characteristics, types of Big		
	Data, Traditional vs. Big Data business approach, Case		
	Study of Big Data Solutions, Concept of Hadoop Core		
	Hadoop Components; Hadoop Ecosystem		
2.	Hadoop HDFS and MapReduce: Distributed File	4	CO2
	Systems: Physical Organization of Compute Nodes,		
	Large-Scale File-System Organization. MapReduce:		
	The Map Tasks, Grouping by Key, The Reduce Tasks,		
	Combiners, Details of MapReduce Execution, Cop-		
	ing with Node Failures. Algorithms Using MapRe-		
	duce: Matrix-Vector Multiplication by MapReduce,		
	Relational-Algebra Operations, Computing Selections		
	by MapReduce, Computing Projections by MapRe-		
	duce, Union, Intersection, and Difference by MapReduce		
	Hadoop Limitations		

3.	NoSQL: Introduction to NoSQL, NoSQL Business Drivers, NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture Choosing distribution models: master-slave versus peer- to-peer; NoSQL systems to handle big data problems	6	CO3
4.	Mining Data Streams: The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Process- ing. Sampling Data techniques in a Stream Filtering Streams: Bloom Filter with Analysis, Counting Distinct Elements in a Stream, Count-Distinct problem, Flajolet- Martin Algorithm, Combining Estimates, Space Re- quirements Counting Frequent Items in a Stream, Sam- pling Methods for Streams, Frequent Item sets in De- caying Window, Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Al- gorithm, Query Answering in the DGIM Algorithm, De- caying Windows.	6	CO4
5.	Finding Similar Items, Clustering, and Real- Time Big Data Models: Distance Measures: Defi- nition of a Distance Measure, Euclidean Distances, Jac- card Distance, Cosine Distance, Edit Distance, Ham- ming Distance. CURE Algorithm, Stream-Computing, A Stream-Clustering Algorithm, Initializing and Merg- ing Buckets, Answering Queries PageRank Overview, Efficient computation of PageRank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector. A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filter- ing. Social Networks as Graphs, Clustering of Social- Network Graphs, Direct Discovery of Communities in a social graph.	6	CO5

6.	Big Data Analytics Frameworks: Spark Frame-	7	CO6
	work: Introduction to GPU Computing, CUDA Pro-		
	gramming Model, CUDA API, Simple Matrix, Multipli-		
	cation in CUDA, CUDA Memory Model, Shared Mem-		
	ory Matrix Multiplication, Additional CUDA API Fea-		
	tures, Spark SQL and GraphX: SQL Context, Importing		
	and Saving data, Data frames – using SQL, GraphX		
	overview, Creating Graph, Graph Algorithms, Spark		
	Streaming: Overview, Errors and Recovery, Streaming		
	Source, Streaming live data with spark.		

Te	xt Books
1.	CreAnand Rajaraman and Jeff Ullman "Mining of Massive
	Datasets", Cambridge University Press, 2014
2.	Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech
	Press.
3.	Dan Mcary and Ann Kelly — "Making Sense of NoSQL – A guide
	for managers and the rest of us", Manning Press
Re	ference Books
1.	Bill Franks, Taming, "The Big Data Tidal Wave: Finding Opportu-
	nities In Huge Data Streams With Advanced Analytics", Wiley
2.	Chuck Lam, "Hadoop in Action", Dreamtech Press
3.	Jared Dean, "Big Data, Data Mining, and Machine Learning: Value
	Creation for Business Leaders and Practitioners", Wiley India Pri-
	vate Limited, 2014.
4.	Jiawei Han and Micheline Kamber, "Data Mining: Concepts and
	Techniques", Morgan Kaufmann Publishers, 3rd ed, 2010.

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5014S
Course Title	Soft Computing
Course Type	Program Core-IV

Prerequisites: Neural network

Course Outcomes: At the end of the course student will be able to: **CO1.** Construct intelligent systems leveraging the archetype of soft computing techniques.

CO2. Provide the mathematical background for carrying out the optimization associated with intelligent learning algorithms.

CO3. Design hybrid system to revise the principles of soft computing in various applications.

CO4. Develop familiarity with current research problems and research methods in soft computing.

	Course Contents	Hrs.	CO
1.	Fuzzy Logic: Introduction to fuzzy logic, Fuzzy mem-	12	CO1,
	bership functions, Operations on fuzzy sets, Fuzzy re-		CO4
	lations, Fuzzy propositions, Fuzzy implications, Fuzzy		
	inferences, Defuzzification Techniques, Fuzzy logic con-		
	troller, Advances in fuzzy logic		
2.	Genetic Algorithm (GA): Concept of GA, GA Op-	8	CO1,
	erators: Encoding, Selection, Crossover, Mutation, Ad-		CO2,
	vances in GA		CO4
3.	Multi-Objective Optimization: Introduction to	8	CO1,
	MOO problem, Non-Pareto based approach for MOO		CO2,
	problem, Pareto based approach for MOO problem, Ad-		CO4
	vances in MOO		
4.	Artificial Neural Network: Introduction to ANN,	8	CO1,
	Various architectures of ANN, Learning algorithms of		CO4
	ANN, Advances in ANN		
5.	Hybrid Systems: Integration of Neural Networks,	4	CO1,
	Fuzzy Logic and Genetic Algorithms, Research orien-		CO3,
	tation of soft computing techniques		CO4

Te	xt Books
1.	S.N. Sivanandam and S.N. Deepa, "Principles of Soft Computing",
	Wiley India, 2007.
2.	S. Rajasekaran and G. A. Vijayalakshmi Pai, "Neural Networks,
	Fuzzy Logic, and Genetic Algorithms (Synthesis and Applications)",
	PHI Education, 2003.
Re	ference Books
1.	Fakhreddine O. Karray and Clarence De Silva, "Soft Computing and
	Intelligent Systems Design (Theory, Tools and Applications)", Pear-
	son education, 2009.
2.	Timothy J. Ross, "Fuzzy Logic with engineering applications", John
	Wiley; Sons, 2016.
3.	Melanic Mitchell, "An Introduction to Genetic Algorithm", MIT
	Press, 1998.
4.	Carlos A. Coello Coello, Gary B. Lamont and David A. Van Veld-
	huizen, "Evolutionary Algorithms for Solving Multi-Objective Prob-
	lems", 2 nd Edition, Springer, 2007.
5.	Simon Haykin, "Neural Networks and Learning Machines", 3 rd Edi-
	tion, Pearson, 2009.

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5041T	
Course Title	Network Administration	
Course Type	Program Elective-III	
Prerequisites: Co	omputer Networks	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Analyze different network architectures and their features.		
CO2. Perform vari	ious network operations and maintenance activities.	
CO3. Identify the requirements of a data center network.		
CO4. Examine and	d analyze the network effectively.	
CO5. Design a sec	ure network and resolve the issues.	

	Course Contents	Hrs.	CO
1.	Network Architecture Overview: Physical Infras-	6	CO1
	tructure, Logical Design, ISO/OSI Model, Network		
	Topologies, Data Communication and Routing, Network		
	Addressing and Security Features		
2.	Network Operations and Processes: Monitoring,	7	CO2,
	Management: Access and Audit Trail, Life Cycle, Con-		CO4
	figuration Management, Deployment Process, Docu-		
	mentation: Network Design and Implementation, DNS,		
	Labeling, Support: Tools, Organizational Structure,		
	Network Services.		
3.	Datacenter Networks: Build/Rent/Outsource, Re-	7	CO1,
	quirements, Capacity Management, Life-Cycle Manage-		CO3
	ment, Patch Cables, Labeling, Console Access, Work-		
	bench, Tools and Supplies, Security Aspects.		
4.	Network Monitoring: Overview, Monitoring Plat-	8	CO2,
	forms, Data Collection and Performance Analysis, Sys-		CO4
	tems and Service Monitoring, SNMP, Namespaces and		
	Nameservices, Time Management, Customer Support,		
	Incident Report.		
5.	Network Maintenance: Change Management, Scal-	8	CO2,
	ing and Expansion, Server Upgrades, Maintenance Win-		CO4 $ $
	dows, Software Repositories and Licencing, Data Stor-		
	age, Backup and Restore, Disaster Recovery.		

6.	Network Security: Basic Security Measures, The OSI	6	CO1,
	Security Architecture, Security Attacks, Security Ser-		CO5 $ $
	vices and Mechanisms, Fundamental Security Design		
	Principles, Attack Surfaces and Attack Trees, A Model		
	for Network Security, Standards, Legal and Ethical Is-		
	sues.		

Text Books

1.	Thomas Limoncelli, Christina Hogan, Strata Chalup "The Practice		
	of System and Network Administration, Volume 1", 3ed, Addison-		
	Wesley (2017)		
2.	Evi Nemeth, Garth Snyder, Trent Hein, Ben Whaley, Dan Mackin,		
	"UNIX and Linux System Administration Handbook", 5ed, Addison-		
	Wesley (2018)		
Re	Reference Books		
1.	Mark Burgess, "Principles of Network and System Administration",		
	2ed, John Wiley (2004)		
2.	William Stallings, "Network Security Essentials", 6ed, Pearson		
	(2017)		

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5042T	
Course Title	Ad-hoc Network	
Course Type	Program Elective-III	
Prerequisites: Computer Network.		
Course Outcomes: At the end of the course student will be able to:		
CO1. Justify the wireless technology requirements.		

CO2. Apply the MAC protocols for the design of wireless network.

CO3. Inspect the behaviour of Mobile IP and routing protocols.

CO4. Examine the impact of transport layer protocols over wireless and wired medium.

CO5. Evaluate resource optimization techniques for better performance.

CO6. Design and deploy different wireless networks.

	Course Contents	Hrs.	CO
1.	Introduction: Wireless technology: Signals, Antennas,	4	CO1
	Spectrum, Radio Propagation Mechanism, Characteris-		
	tics of wireless Channel, Issues in Ad Hoc Wireless Net-		
	works, Multiplexing, Modulation.		
2.	MAC Protocols for Ad Hoc Wireless Networks:	6	CO2
	Introduction, Issues in Designing a MAC Protocol for		
	Ad Hoc Wireless Networks, Motivation for a special-		
	ized MAC, Design Goals of a MAC Protocol for Ad Hoc		
	Wireless Networks, Classifications of MAC Protocols.		
3.	Wireless LAN and PAN: Fundamentals of WLAN,	8	CO1,
	IEEE 802.11 standards, HIPERLAN, Bluetooth. Wire-		CO2 $ $
	less Internet: Introduction, Mobile IP, WAP.		
4.	Routing Protocols for Ad Hoc Wireless Net-	6	CO3
	works: Introduction, Issues in Designing a Routing		
	Protocol for Ad Hoc Wireless Networks, Classifications		
	of Routing Protocols: Table-Driven Routing Protocols,		
	On-Demand Routing Protocols, Hybrid Routing Pro-		
	tocols, Routing protocols with efficient flooding mech-		
	anisms (OLSR), power-aware routing protocols, Multi-		
	cast routing: zonal routing etc.		

5.	Transport Layer and Security Protocols for Ad	6	CO4
	Hoc Wireless Networks: Introduction, Traditional		
	TCP, indirect TCP, Snooping TCP, Fast retransmit/fast		
	recovery, transmission/time out freezing, selective re-		
	transmission, transaction-oriented TCP. Network Secu-		
	rity Attacks: Network Layer, Transport Layer, Appli-		
	cation Layer, Key Management, Secure Routing in Ad		
	Hoc Wireless Networks.		
6.	Quality of Service in Ad Hoc Wireless Networks:	10	CO5,
	Introduction, Issues and Challenges in Providing QoS in		CO6
	Ad Hoc Wireless Networks, Classifications of QoS Solu-		
	tions, QoS Frameworks for Ad Hoc Wireless Networks.		
	Energy Management in Ad Hoc Wireless Networks: In-		
	troduction, Need for Energy Management in Ad Hoc		
	Wireless Networks, Classification of Energy Manage-		
	ment Schemes, Battery Management Schemes, Trans-		
	mission Power Management Schemes, System Power		
	Management Schemes. Case study: Cellular network,		
	802.15.4, 802.16 Recent Advances in the domain.		

Te	xt Books
1.	Jochen Schiller, "Mobile communications", 2nd Edition, Pearson Ed-
	ucation, 2008.
2.	C. Siva Ram Murthy and B.S. Manoj, "Ad Hoc Wireless Net-
	works: Architectures and Protocols", third Edition, Pearson edu-
	cation, 2008.
Re	ference Books
1.	Wiiliam Stallings, "Wireless Communications and Networks" Pren-
	tice Hall, 2nd edition, 2005.
2.	C K Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Sys-
	tems", 1st Edition, Pearson education, 2002.
3.	Rappaport, "Wireless Communications Principals and Practices",
	2nd Edition, Pearson Education Pvt. Ltd, 2003.

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5043T
Course Title	Software Project Management
Course Type	Program Elective-III

Prerequisites: Software Engineering.

Course Outcomes: At the end of the course student will be able to: **CO1.** Apply project management concepts and techniques to software projects.

CO2. Explain Process groups and Project Integration Techniques for software projects.

CO3. Mange scope and time of software projects.

CO4. Estimate cost and assure quality of software projects.

CO5.Determine human resource and manage communications among project team members.

CO6. Control risk of software projects and carry out procurement for software projects.

	Course Contents	Hrs.	CO
1	Introduction to Project Management: Introduc-	6	CO1
	tion to Project and Project Management, Program		
	and Project Portfolio Management, The Role of the		
	Project Manager, A Systems View of Project Man-		
	agement, organizational structure, Stakeholder Manage-		
	ment, Project Phases and the Project Life Cycle, List		
	the project management processes.		
2	The Project Management Process Groups and	8	CO2
	Project Integration Management: Project Man-		
	agement Process Groups, Developing Software Project		
	Management Methodology. Project Integration Man-		
	agement: Develop Project Charter, Develop Project		
	Management Plan, Direct and Manage Project Execu-		
	tion, Monitor and Control Project Work, Perform Inte-		
	grated Change Control, Close Project or Phase.		

3.	Project Scope and Time Management: Project Scope management: Collect requirements, Define scope Create Work Breakdown Structure (WBS), Verify scope, Control scope. Project Time Management: Define activities, Sequence activities, Estimate resources and duration for each of the defined activities, Develop a project schedule, Develop a process for monitoring and controlling the project schedule.	6	CO3
4.	Project Cost and Quality Management: Project Cost Management: Planning Cost Management, Pro- cesses of Cost Management: Estimate Costs, Determine Budget, Control Costs. Project Quality Management: Pan for quality in your projects Perform quality assur- ance and quality control, Tools and Techniques for Qual- ity Control.	6	CO4
5.	Project Human Resource and Communications Management: Project Human Resource Management: Developing the Human Resource Plan, Acquiring the Project Team, Developing the Project Team, Managing the Project Team. Project Communications Manage- ment: Planning Communications Management, Manag- ing Communications, Controlling Communications, In- formation Distribution, Performance Reporting, Man- aging Stakeholders.	6	CO5
6.	Project Risk Management and Procurement Management: Plan risk management: Identifying Risks, Performing Qualitative Risk Analysis, Perform- ing Quantitative Risk Analysis, Planning Risk Re- sponses, Controlling Risks. Planning Procurement Management: Plan procurement, Conduct procure- ment, Administer procurement, Close procurement.	6	CO6

Te	Text Books	
1.	Kathy Schwalbe, "Information Technology Project Management",	
	Revised, 7th Edition, Cengage Learning, 2014.	
2.	John M. Nicholas, Herman Steyn, "Project Management for Business	
	and Technology", PHI, 4th Edition, 2000.	
Re	Reference Books	
1.	Joseph Phillips, "IT Project Management: On Track from Start to	
	Finish", Mc-Graw Hill Publication, 3rd Edition, 2010.	
2.	P. Jalote, "Software Project Management in Practice", Pearson Ed-	
	ucation, 2002.	

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5044T
Course Title	Software Architecture
Course Type	Program Elective- III

Prerequisites: Software Engineering, Object Oriented Programming language.

Course Outcomes: At the end of the course student will be able to: **CO1.** Describe the role and function of software architecture in modern development methodologies

CO2. Identify architectural styles in existing software systems and apply to new software

CO3. Analyze architectural patterns in existing software systems and apply to new software

CO4. Identify and evaluate appropriate software quality attributes and requirements

	Course Contents	Hrs.	CO
1.	Architecture Description and Architectural	6	CO1
	Views: Prescriptive vs Descriptive Architecture, Ar-		
	chitectural Design- DSSA, Architectural Pattern, Archi-		
	tectural Styles: Layered styles, Data-flow styles, Shared		
	memory, interpreter Style, Implicit Invocation Styles,		
	Peer to Peer Styles. Complex Architectural Style: C2		
	and CORBA Connectors: Roles, Types of Connector,		
	Data Distribution connector: Event based, Grid-based,		
	Client-server based, P2P based.		
2.	Micro Architectural design principles and Pat-	8	CO2,
	terns: Single Responsibility Pattern, Open close princi-		CO3
	ple, Liskovs substitution principle, Interface segregation		
	principle, dependency inversion principle, Singleton De-		
	sign Pattern, Factory Design Pattern, Strategy Design		
	Pattern, Observer Design Pattern, Builder Design Pat-		
	tern, Adapter Design Pattern, Decorator Design Pat-		
	tern, Chain of Responsibility Design Pattern		

3.	Component Principles and Middleware Archi-	6	CO2,
	tectures: Component Cohesion- reuse release equiv-		CO3
	alence principle, common closure principle, common		
	reuse principle. database middleware, application		
	server middleware, Message-Oriented Middleware - Pub-		
	lish–Subscribe, Message Brokers, Web middleware.		
4.	Applied Architectures and Styles, Designing for	6	CO2
	Non-Functional Properties: Macro Architectural		
	Patterns: Event Driven Architecture, Microkernel Ar-		
	chitecture, MicroServices Architecture Pattern, Service-		
	Oriented Architectures SOAP and REST		
5.	Software Quality Attributes: Performance, Scalabil-	6	CO4
	ity, Modifiability, Security, Availability, Efficiency, Com-		
	plexity, Heterogeneity, Adaptability, Dependability.		
6.	Case studies: Case studies of Microservices-Based Ar-	6	CO2,
	chitecture, SOAP and rest		CO3,
			CO4

Te	xt Books
1.	Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, "Software Ar-
	chitecture: Foundations, Theory, and Practice", Addison-Wesley,
	2007.
2.	Len Bass, Paul Clements, Rick Katzman, Ken Bass, "Software Ar-
	chitecture in Practice", Addition Wesley, 2014
Re	ference Books
1.	Ian Gorton, "Essential Software Architecture", Springer 2011
2.	Robert C Martin, "Clean Architecture - a craftsman's guide to soft-
	ware structure and design", Pearson education 2018.
3.	Eberhard Wolff, "Microservices-Flexible Software Architecture",
	Pearson Education 2017.

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5051S	
Course Title	Network Security	
Course Type	Program Elective -IV	
Prerequisites: Ni	l.	
Course Outcomes: At the end of the course student will be able to:		
CO1. Demonstrate the concept of cryptography, Network security ,Lay-		

ered Architecture.

CO2. Evaluate network Stack Vulnerabilities, threats and counter measures

 ${\bf CO3.}$ Analyze the network and web attacks at different layers of TCP/IP stack.

CO4. Explore a better understanding of Network Security Protocols.

CO5. Apply the fundamentals of security in programs, operating systems and databases.

	Course Contents	Hrs.	CO
1.	Overview of Security: Motivation, Terminol-	4	CO1
	ogy/Background, Cryptography Overview, Con-		
	fidentiality, Integrity, Authentication: Founda-		
	tions,Symmetric key encryption, Block modes,		
	Asymmetric key encryption, Hashes, MACs, Digital		
	Signatures, key distribution, one way/mutual/mediated		
	authentication, Protocols Overview, Introduction to		
	Network security ,Layered architecture, Client Server		
	architecture, Peer-to-Peer Architecture.		
2.	Vulnerabilities and Threat in Network Stack: Ba-	7	CO2
	sic services used and provided by TCP/IP Stack, Types		
	of devices constituting a network. Concept of Internet		
	Service Providers (ISPs) and overall conceptual view of		
	the Internet. Routing fundamentals. Different types of		
	networks such as LAN, WAN, VPN, etc, TCP/IP Proto-		
	col and its Vulnerabilities, Hyper Text Transfer Protocol		
	(HTTP) and corresponding cyber security vulnerabili-		
	ties.TCP/UDP/IP Vulnerabilities,Data link layer pro-		
	tocol vulnerability, Routing attacks.		

3.	Network and Web Attacks: Attacks at link/network/transport/application layer,Denial of Service (DOS) attacks, Firewalls, Intrusion Detec- tion,Malware and its types, The OWASP top 10- attacks,Client side and Server side attacks: Injection, Vulnerability, SQL injection, Cross Site Scripting (XSS) . Session Hijacking,Phishing, Click jacking, scripting, Broken Authentication and Session Management, Insecure Direct Object References, Cross Site Request Forgery (CSRF) Vulnerability, Failure to Restrict URL Access, Invalidated Redirects and Forwards.	7	CO3
4.	Network Security protocols: Application Layer: SSH.PGP,MIME,Transport Layer: TLS/SSL, Network Layer: IPSec, Link Layer: WPA, WEP, Open source tools for defense mechanism, Network Security con- trols, How to use network analysis tool: Wireshark and NMAP, ESAPI structure: security mechanism to miti- gate the top 10 threats of OWASP, Defenses against the same.	7	CO4
5.	System Security: Introduction to System Security, Server Security, OS Security, Database Security, Various concepts of system and server security, overview of pro- gram security.	7	CO5
6.	Advances in network security: Cyber Security and Recent Technologies ,Security aspects in IoT, Cloud Computing and Image/video data. Bio-metrics, Mobile Computing and Hardening on android and ios, IOT Se- curity, Android Malware Analysis, Experimentation us- ing open source tools	7	CO5, CO1

Te	Text Books	
1.	William Stallings, "Cryptography and Network Security", Pearson	
	Education/PHI, 2006	
2.	Network Security Bible second edition by eric cole	
Re	Reference Books	
1.		
2.		

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5052S
Course Title	Blockchain Technology
Course Type	Program Elective-IV

Prerequisites: Cryptography, Programming language.

Course Outcomes: At the end of the course student will be able to: **CO1.** Identify essential features of blockchain, cryptocurrency, and distributed ledger technology.

CO2. Apply various blockchain concepts to analyze examples, proposals, case studies, and preliminary blockchain system design discussions

 ${\bf CO3.}$ Classify consensus algorithms for different case studies.

CO4. Design smart contract for real world applications.

CO5. Understand and Asses security issues of blockchain and smart contracts.

CO6. Evaluate potential uses cases from a business, legal, and engineering perspective.

	Course Contents	Hrs.	CO
1.	Foundations: Ledgers - Databases - Distributed	4	CO1
	systems - Hash-linked chains, distributed ledger,		
	Blockchain as new form of trust, distributed consensus,		
	Double- Spending Problem, GHOST protocol.		
2.	Bitcoin Blockchain: Bitcoin Blockchain and scripts,	8	CO1,
	Use cases of Bitcoin Blockchain scripting language in		CO2 $ $
	micro-payment, escrow etc Downside of Bitcoin – min-		
	ing, UTXO Model, Transactions, The Merkle Root,		
	Signing and Validating Transactions, The Coin-base		
	Transaction, Wallets.		
3.	Ethereum Blockchain: Ethereum and Smart con-	8	CO2,
	tracts, Lightweight wallets, Hierarchical deterministic		CO3
	wallets, Extended public keys, Deriving hardened pri-		
	vate keys, Public key math, Public key multiplica-		
	tion, Public key encoding, Merkle trees, Security of		
	lightweight wallets, NFTs and ERC-721 Tokens Stable-		
	coins and other ERC-20 Tokens Decentralized Finance		
	(DeFi), Layer 2 and Payment Channel Networks (Light-		
	ning)		

4.	Hyperledger Blockchain: Fabric network: Infras-	8	CO2.
4.		0	
	tructure, Participants In Hyperledger Blockchain Net-		CO3
	work, Chaincode, Types Of Peers, Transaction Life-		
	Cycle Of Hyperledger Fabric,		
5.	Privacy, Security issues in Blockchain: Pseudo-	4	CO5
	anonymity vs. anonymity, Zcash and Zk-SNARKS		
	for anonymity preservation, attacks on Blockchains –		
	such as Sybil attacks, selfish mining, 51% attacks		
	advent of algorand, and Sharding based consensus algo-		
	rithms, User Addresses and Privacy Security issues in		
	Blockchain: Anonymity, Sybil Attacks, Selfish Mining,		
	51/49 ratio Attacks		
6.	Case Studies: Case studies of Blockchain: e-	6	CO4,
	Governance, e-Commerce, Database Applications where		CO6
	third party is involved Use Cases: Cryptocurrency and		
	Other Sectors like Finance, Land Registration, Vot-		
	ing System, IoT and smart cities, and Healthcare, etc.		
	Block chain in Social Networking, block chain in 5G,		
	Cross border payments, Know Your Customer (KYC),		
	Food Security, Mortgage over Blockchain, Crowd fund-		
	ing, International Trade finance, Supply Chain Manage-		
	ment, Smart cities, Provenance, Slock		

Te	xt Books	
1.	Andreas M. Antonopoulos, Gavin Wood, Dr. Gavin Wood, "Mas-	
	tering Ethereum: Building Smart Contracts and DApps", O'Reilly	
	Media, Incorporated, 2018.	
2.	A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S Goldfeder,	
	"Bitcoin and Cryptocurrency Technologies", Princeton University	
	Press, 2016	
3.	Andreas M. Antonopoulos, "Mastering Bitcoin Programming the	
	Open Blockchain", O'Reilly Media 2017.	
Re	Reference Books	
1.	M. Swan, "Blockchain: Blueprint for a New Economy", OReilly, 2015	

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5053S	
Course Title	Parallel Algorithms	
Course Type	Program Elective-IV	
Prerequisites: D	iscrete Mathematics , Data Structures, Design and	
Analysis of algorith	ums.	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Analyze the	e applications for parallel algorithms and distributed	
processing.		
CO2. Design and	analyze the computational complexity of a parallel	
algorithm		
CO3. Evaluate parallel concepts with different programming languages.		
CO4. Categorize various non-numerical and numerical algorithms in		
Parallel algorithms.		

			<u> </u>
	Course Contents	Hrs.	CO
1.	Introduction: Need for parallel computers, Scope	6	CO1
	of Parallel Computing, Theoretical models of parallel		
	computation: PRAM, interconnection networks, Perfor-		
	mance Metrics for Processors, Performance of Parallel		
	Algorithms, Parallel Programming Models, Analyzing		
	and Expressing parallel algorithms, Distributed process-		
	ing.		
2.	Fundamentals of Parallel Algorithm Design:	6	CO2
	Principles of Parallel Algorithm Design: Preliminaries,		
	Decomposition Techniques, Characteristics of Tasks and		
	Interactions, Mapping Techniques for Load Balancing,		
	Methods for Containing Interaction Overheads, Parallel		
	Algorithm Models.		
3.	Analytical modeling and parallel program:	6	CO2
	Sources of Overhead in Parallel Programs, Basic perfor-		
	mance measures, measures of data communication, Mul-		
	tiplication factors, effect of software, cognitive system,		
	bench-marking, defining and measuring cost, scalability		
	of parallel system., Asymptotic Analysis of Parallel Pro-		
	grams.		

4.	Parallel Programming Models: Basic Communica- tion Operations , Parallel programming with message passing using MPI, , Directives based parallel program- ming models, Open MP, OpenACC, Thread level paral- lelism, GPU architectures and the programming model for GPGPU (CUDA), Strategies for efficient CUDA pro- gramming.	8	CO3
5.	Non-numerical algorithms: Sorting: Hyper quick sort, Merge sort, Bitonic merge sort, odd even transpo- sition, Enumeration sort, Graphs: Graph coloring, Min- imal spanning tree, Shortest path algorithm, Searching	8	CO4
	and selection, Dynamic programming.		
6.	Numerical algorithms: Dense matrix algorithms: Matrix-Vector Multiplication, Matrix-Matrix Multi- plication, Matrix-Matrix Multiplication, Fast Fourier transforms: The Serial Algorithm, The Binary- Exchange Algorithm, The Transpose Algorithm, Limits to parallelizability. Advances in the domain.	6	CO4

Te	xt Books
1.	AnanthGrama, Anshul Gupta, George Karypis, Vipin Kumar, "In-
	troduction to Parallel Computing, Pearson Education", Second Edi-
	tion, 2007.
2.	Fayez Gebali, "Algorithms and Parallel Computing", Wiley publica-
	tions, 2011.
Re	ference Books
1.	Michael J. Quinn, "Parallel Programming in C with MPI and
	OpenMP", McGraw-Hill International Editions, Computer Science
	Series, 2008.
2.	Barbara Chapman, "Using OpenMP - Portable Shared Memory Par-
	allel Programming", The MIT Press Cambridge, Massachusetts Lon-
	don, England 2008.
3.	David B. Kirk and Wen-mei W. Hwu, "Programming Massively Par-
	allel Processors A Hands-on Approach", Second Edition, Elsevier
	2013.

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5054S	
Course Title	Software Defined Network	
Course Type	Program Elective-IV	
Prerequisites: Co	omputer Network.	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Demonstrate the working of SDN.		
CO2. Emulate SDN using openflow.		
CO3. Programme the SDN.		
CO4. Apply SDN in data center.		
CO5. Study SDN security and its applications.		

	Course Contents	Hrs.	CO
1.	Computer Network Design Foundation: Introduc-	06	CO1
	tion to SDN: History of Software Defined Networking		
	(SDN), Modern Data Center, Traditional Switch Archi-		
	tecture, Why SDN, Evolution of SDN, How SDN Works		
	– Centralized and Distributed Control and Date Planes,		
	The Genesis of SDN		
2.	Open Flow and SDN Controllers: Open Flow Spec-	06	CO2
	ification, SDN via APIs, SDN via Hypervisor- Based		
	Overlays – SDN via Opening up the Device, General		
	Concepts, OpenFlow Protocol, SDN Controllers: Intro-		
	duction, VMware - Nicira - VMware/Nicira - OpenFlow-		
	Related - Mininet - NOX/POX - Trema - Ryu - Big		
	Switch Networks/Floodlight Layer 3 Centric - Plexxi -		
	Cisco OnePK		
3.	SDN Programming: Northbound Application Pro-	06	CO3
	gramming Interface, Current Languages and Tools,		
	Composition of SDNs – Network Functions Virtual-		
	ization (NFV) and Software Defined Networks: Con-		
	cepts, Implementation and Applications, NetApp De-		
	velopment, Network Slicing		

4.	SDN in Data Center: SDN in the Data Center - SDN in Other Environments - SDN Applications - SDN Use Cases - The Open Network Operating System 3, Multitenant and Virtualized Multitenant Data Center - SDN Solutions for the Data Center Network - VLANs - EVPN - VxLAN - NVGRE	08	CO4
5.	SDN Security: Security Characteristics of SDN, Security Analysis and Potential attacks in SDN, Security Principles of SDN, Solutions to the security issues in SDN, Network Security enhancement using the SDN Framework – Issues and Challenges, Threats to SDN -Networks, Controllers, Applications	06	CO5
6.	SDN Applications and SDN Future: SDN applications-Reactive versus Proactive Applications, Analysing Simple SDN Applications, A Simple Reac- tive Java Application, Using the Floodlight Controller, Using the Open Daylight Controller, Access Control for the Campus, Traffic Engineering for Service Providers, Applications of SDN to Real Networks. SDN Future -Potential Novel Applications of Open SDN-Managing Non-traditional Physical Layer Links, Applying Pro- gramming Techniques to Networks, Security Applica- tions, Roaming in Mobile Networks, Traffic Engineering in Mobile Networks, SDN Open Source - SDN Futures - Final Thoughts and Conclusions	08	CO5

Te	xt Books
1.	Paul Goransson and Chuck Black, "Software Defined Networks:
	A Comprehensive Approach", Morgan Kaufmann, 2014, ISBN:
	9780124166752, 9780124166844.
2.	SiamakAzodolmolky, "Software Defined Networking with Open Flow,
	Packt Publishing, 2013, ISBN: 9781849698726.
3.	Thomas D. Nadeau, Ken Gray, "SDN: Software Defined Networks,
	An Authoritative Review"
Re	ference Books
1.	1. Vivek Tiwari, "SDN and OpenFlow for Beginners", Digital Ser-
	vices, 2013, ISBN: 10: 1-940686-00-8, 13: 978-1-940686-00-4.
2.	Fei Hu, "Network Innovation through OpenFlow and SDN: Principles
	and Design", CRC Press, 2014, ISBN: 10: 1466572094.
3.	Open Networking Foundation (ONF) Documents,
	https://www.opennetworking.org, 2015

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5065S	
Course Title	Human Computer Interaction	
Course Type	Open Elective-II	
Prerequisites: Ni	l.	
Course Outcomes: At the end of the course student will be able to:		
CO1. Analyze the importance of various aspects of HCI.		
CO2. Apply different tools for interactive system design for HCI		
CO3. Design different web interfaces of HCI.		
CO4. Evaluate interaction using different interactive style.		
CO5. Distinguish usability aspects of software system.		
COG Create soft	and materia with a diversity and the	

CO6. Create software system using UX and UI.

	Course Contents	Hrs.	CO
1.	Introduction to Human-Computer Interaction:	4	CO1
1	Objective, Overview and historical evolution of HCI,	-	001
	Ergonomics, Interaction styles, Elements of the WIMP		
	(windows, icons, pointers, menus) interface, interactiv-		
	ity, the context of the interaction, paradigms for inter-		
	action, Cognitive walkthrough.		
2.	Design process: Human interaction with computers, importance of human characteristics human considera-	8	CO2
	tion, Human interaction speeds, understanding business junctions. Screen Designing, Interaction Design, Inter- active Design, Interface Design, GUI Design, Software		
	Tools, Dialog Design.		
3.	Web Interfaces: Designing Web Interfaces – Drag and	6	CO3
0.	Drop, Direct Selection, Contextual Tools, Overlays, In-	0	000
	lays and Virtual Pages, Process Flow		
4.	Interaction Styles: Concept of combined reality, vir-	6	CO4
	tual reality, technologies, existing scientific and commer-		
	cial projects. Sensing and tracking. Sensors for sensing		
	of fingers, hands and touching. Interactive digital sur-		
	faces, manipulation of digital objects, displays with rear		
	projection.		

5.	Usability Testing and Analytic Evaluation: In-	8	CO5
	volves usability testing through examples, the basics of		
	experimental design, the methods used in usability test-		
	ing, the role of field studies in evaluation, the impor-		
	tant concepts associated with inspection methods, how		
	heuristic evaluation can be adapted to evaluate different		
	types of interactive products, what is involved in doing		
	heuristic evaluation and various kinds of walkthrough,		
	how to perform predictive technique, and when to use		
	them, the advantages and disadvantages of using ana-		
	lytical evaluation.		
6.	Design Case Studies: 1] Multikey press Hindi Text	6	CO6
	Input Method on a Mobile Phone, 2] GUI design for a		
	mobile phone based Matrimonial application. 3] Em-		
	ployment Information System for unorganized construc-		
	tion workers on a Mobile Phone		

Text Books

10.		
1.	J. Preece, Y. Rogers and H. Sharp, "Interaction design: Beyond	
	Human-Computer Interaction", 4/e, John Wiley and Sons, 2002.	
2.	Shneiderman B., Plaisant C., Coen M., Jacobs S., "Designing the	
	User Interface: Strategies for Effective Human-Computer Interac-	
	tion", 5/e Pearson Education, 2009.	
Re	Reference Books	
1.	Alan Dix, Janet Fincay, Gre Goryd, Abowd, Russell Bealg, "Human	
	– Computer Interaction. Pearson Education, 2003.	
2.	Helen Sharp, Jennifer Preece, Yvonne Rogers, "Interaction Design",	
	Wiley Dreamtech, 2019.	
3.	Soren Lauesen, "User Interface Design", Pearson Education, 2005.	
4.	Bill Scott and Theresa Neil, "Designing Web Interfaces", O'Reilly,	
	2009.	

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5066S	
Course Title	Machine Learning	
Course Type	Open Elective-II	
D rone and it and Design and enotion diversely and a hilitation of a sector of the se		

Prerequisites: Basic understanding of probability and statistics, linear algebra and calculus.

Course Outcomes: At the end of the course student will be able to:

CO1. . Gain knowledge about basic concepts of Machine Learning

CO2. Identify machine learning tools and techniques solving real time problems

CO3. Solve the problems using various machine learning techniques **CO4.** Optimise and test the model for best performance.

CO5. Exploring the advances in machine learning future to solve real time case studies

			<i><i><i>c</i> c</i></i>
	Course Contents	Hrs.	CO
1.	Introduction: Introduction and Basic Concepts of ML,	6	CO1
	Taxonomy of ML, Types of machine learning: Super-		
	vised Learning, Regression Vs Classification, Unsuper-		
	vised Learning, Clustering, Classification, Rules mining,		
	Prediction, Issues in machine learning.		
2.	Machine learning Tools: R, Python, Scikit Learn,	8	CO2,
	BigML , WEKA, or. any one platform to make ma-		CO3
	chine learning in practice with case studies.Data and		
	Data understanding, Data pre-processing. Learning As-		
	sociation Rules: Mining Frequent Patterns, Apriori al-		
	gorithm, and other varients of Association rules mining		
	algorithms.		
3.	Supervised Learning: Decision Trees: ID3, Classifi-	08	CO1,
	cation and Regression Trees, Regression. Neural Net-		CO3
	works, Support vector machines, Generalized Linear		
	Models (GLM), Probabilistic Learning: Bayesian Learn-		
	ing, Bayes Optimal Classifier, Naive Bayes Classifier,		
	Markov Decision Process (MDP). Ensemble Learning:		
	Model Combination Schemes, Bagging: Random Forest		
	Trees, Boosting: Adaboost, Stacking		

4.	Unsupervised learning: Clustering, Instance-based learning, K-nearest Neighbour, Dimensionality Reduction, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.	6	CO3
5.	Balanced Machine Learning Model and Model Evaluation: What Are Evaluation Metrics? Types of Predictive Models, Confusion Matrix, F-Score, Ac- curacy, Precision, Recall, Gain and Lift Charts , Kolmogorov-Smirnov Chart , Area Under the ROC Curve, Log Loss, Gini Coefficient, Concordant – Discor- dant Ratio, Root Mean Squared Error (RMSE), Root Mean Squared Logarithmic Error, R-Squared/Adjusted R-Squared, Cross Validation, Bias-Variance and Error Analysis, Bias/variance trade-off, Error Analysis, Nor- mal Equations, Variance, Gradient Descent, Model Bal- ancing: Overfitting, underfitting, Variance, Bias and Model Complexity in Machine Learning.	8	CO4
6.	Introduction to Advanced topics in Machine Learning: Deep Neural Networks, Vectorization, Back- propagation, Forward propagation, multi-label classifi- cation, Conditional Random Fields (CRFs), Reinforce- ment Learning, Spectral clustering- Semi-supervised learning. Deep Learning Models: Introduction to NN, important terms in NN, DNN, CNN, RNN, Model Train- ing and testing, Pretrain models, parameter tuning and customized models, Deep learning in images processing, video processing, text processing.	6	CO5

Te	xt Books
1.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press,
	Prentice Hall of India, Third Edition, 2014.
2.	Miroslav Kubat, "An Introduction to Machine Learning", Springer,
	2015.
Re	ference Books
1.	Tom Mitchell, "Machine Learning", McGraw-Hill, 2017
2.	Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn,
	Keras, and TensorFlow: Concepts, Tools, and Techniques to Build
	Intelligent Systems", Third Edition, OReilly Publication, 2022
3.	John D. Kelleher, Deep Learning, The MIT Press Essential Knowl-
	edge series, 2019
4.	Jerome Friedman, Robert Tibshirani, Trevor Hastie, "The Elements
	of Statistical Learning" Springer, 2017.

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5074L
Course Title	Laboratory-4: Devops
Course Type	Laboratory

Prerequisites: Software Engineering, Web Development, Cloud, Networking.

Course Outcomes: At the end of the course student will be able to: **CO1.** Track the changes in the software application development and maintenance.

CO2. Demonstrate continuous integration and development of the software application.

CO3. Design continuous deployment strategy for the software application.

CO4. Apply test automation to the software application.

CO5. Perform configuration management and monitoring of the software application.

CO6. Develop and deploy a software application in the cloud environment.

It is expected to conduct 8-10 experiments in the field of knowledge. One
hour shall be tutored about theory and relevant tools to the students,
and students shall perform the experiment. This is continuous evaluation,
hence all experiments shall be evaluated in the same week. A sample list
of experiments is given it may be altered as and when required.

1 · · · · ·		
Sr. No.	Course Contents	
1.	Practice source code management using Git and	
	GitHub.	
2.	Jenkins installation and setup, explore the environment.	
	Demonstrate continuous integration and development	
	using Jenkins.	
3.	Explore Docker commands for content management.	
	Develop a simple containerized application using	
	Docker.	
4.	Integrate Kubernetes and Docker. Automate the pro-	
	cess of running containerized applications developed in	
	exercise 3 using Kubernetes.	

5.	Install and Explore Selenium for automated testing.
	Write a simple program in JavaScript and perform test-
	ing using Selenium.
6.	Install Ansible in the VM. Setup the inventory, run An-
	sible AdHoc commands. Also run a playbook in Ansible.
7.	Monitor systems, networks and infrastructure using Na-
	gios application.
8.	Design an application using Cloud Services to apply De-
	vOps concepts.

Programme Name	M. Tech. Computer Engineering	
Course Code	COCE5075L	
Course Title	Laboratory 5: Deep learning	
Course Type	Laboratory	
Prerequisites: Ne	eural network, Python, NumPy, TensorFlow, Keras.	
Course Outcome	s: At the end of the course student will be able to:	
CO1. Build and train the deep learning model for various application.		
CO2. Identify the key deep learning architecture parameters.		
CO3. Use best practices to train and develop test sets and analyze		
bias/variance for building DL applications.		
CO4. Apply test automation to the software application.		
CO5. Model the character-level language, natural language processing,		
etc. Architectures.		

It is expected to conduct 8-10 experiments in the field of knowledge. One hour shall be tutored about theory and relevant tools to the students, and students shall perform the experiment. This is continuous evaluation, hence all experiments shall be evaluated in the same week. A sample list of experiments is given it may be altered as and when required. **Reference online course:** Andrew NG, "Deep Learning Specialization", Coursera.

Sr. No.	Course Contents
1.	Write a programme to build the deep neural network
	using NumPy.
2.	Write a programme to regularization in the deep learn-
	ing model to handle the over fitting and also, compare
	the various optimization methods that can speed up
	learning and parameter optimization using NumPy.
3.	Write a programme to build the deep neural network us-
	ing tensorFlow and perform the hyperparamter tuning,
	regularization, and optimization.
4.	Write a programme to build ConvNet in TensorFlow for
	a classification problem.
5.	Write a programme to build ConvNet using Transfer
	Learning approach.
6.	Write a programme to perform the Neural Style Transfer
	algorithm.

7.	Write a programme to build recurrent nueral network
	for text data using TensorFlow.
8.	Write a programme to build long-short-term-memory for
	sequential data using TensorFlow.
9.	Write a programme to use word vector representations
	to build an Emojifier for finding the most appropriate
	emoji to be used with this sentence.
10.	Write a programme to build neural machine translation.
11.	Write a programme to perform the name entity recog-
	nition.
12.	Write a programme to perform the trigger
	word/keyword detection from speech data.

Programme Name	M. Tech. Computer Engineering
Course Code	COCE5076L
Course Title	Laboratory-6: Big Data Analytics
Course Type	Laboratory

Prerequisites: Database Management System, Machine Learning, Computer Network.

Course Outcomes: At the end of the course student will be able to:

 ${\bf CO1.}\,$ Perform regression analysis , clustering , reading big data from online website

CO2. Perform setup of hadoop cluster and illustrate hdfs commands.

CO3. Design the Map reduce algorithms to perform number processing on single node cluster.

CO4. Apply the map reduce algorithms to perform analytics on single node cluster.

CO5. Solve the database operations using Mongo DB.

CO6. Illustrate the performance of hive, pig, spark, scala programs.

It is expected to conduct 8-10 experiments in the field of knowledge. One hour shall be tutored about theory and relevant tools to the students, and students shall perform the experiment. This is continuous evaluation, hence all experiments shall be evaluated in the same week. A sample list of experiments is given it may be altered as and when required. **Reference online course:** Andrew NG, "Deep Learning Specialization", Coursera.

Sr. No. Course Contents 1. Setup Hadoop Single Node cluster and compare Hadoop 1.x, Hadoop 2.x and Hadoop 3.x 2. Setup Hadoop multimode cluster and compare the exe- entities times for single node and multimode cluster and compare the exe-
1.x, Hadoop 2.x and Hadoop 3.x2.Setup Hadoop multimode cluster and compare the exe-
2. Setup Hadoop multimode cluster and compare the exe-
anting time for single and sould multime de alerter en e
cution time for single node and multimode cluster on a
input file size greater than 4.9 GB.
3. Write a MapReduce code which prints words with a) fre-
quency three only. b) The same set of integers, but with
each integer appearing only once. c) The count of the
number of distinct integers in the input. d) Aggregate
inputs and search records based on aggregation output.
4. Setup HIVE and Pig and compare their architecture.
5. Setup HBase and study its architecture.

6.	Setup Spark and write Scala code for wordcount.
7.	Write Scala code for counting all lowercase characters in
	an input file.
8.	Implement Kmeans clutering algorithm using Spark
	MLib.
9.	Implement streaming using Spark streaming and Apache
	Kafka.
10.	Write a programme to perform the trigger
	word/keyword detection from speech data.