VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE (VJTI) MATUNGA, MUMBAI 400 019

(Autonomous Institute affiliated to University of Mumbai)

Curriculum (Scheme of Instruction & Evaluation and Course contents)

For
Two Year Post Graduate Programme
Leading to Master of Technology
(M.Tech.) Degree in
Internet of Things (IoT)

Implemented from the batch admitted on Academic Year 2022-23

VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE

(Autonomous Institute affiliated to University of Mumbai)

Curriculum

(Scheme of Instruction & Evaluation and Course contents)

For

Post Graduate Programme Leading toMaster of Technology Degree

In

Internet of Things (IoT)

From Academic Year 2022-23

M Tech Internet of Things (IoT)

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	Apply analysis, design, optimization and implementation skills in order to formulate
	and solve IoT and allied multidisciplinary problems.
PEO 2	Take up higher studies, innovation, research & development and other such creative
	efforts in technology.
PEO 3	Use their skills in professional manner to raise the satisfaction level of stake holders.

PROGRAM OUTCOMES(POs)

	LIST OF PROGRAM OUTCOMES				
PO1	An ability to independently carry out research/investigation and development				
	work to solve practical problems.				
PO2	An ability to write and present a substantial technical report/document.				
PO3	Students should be able to demonstrate a degree of mastery over the area as per				
	the specialization of the program. The mastery should be at a level higher than				
	the requirements in the appropriate bachelor program.				

M.Tech. Internet of Things (IoT)

Scheme of Instruction and Evaluation

SEMESTER I

	Scheme of Instruction Scheme of Evaluation							
S.No	Course Code	Course Title	L-T-P	Cred its	TA	MST	ESE	ESE hours
1	EEIT5001S	Computational Methods (Program Specific Maths)	3-0-0	3	20	20	60	3
2	EEIT5011T	Principles of IoT (Core-1)	3-1-0	4	20	20	60	3
3	EEIT5012T	Intelligent Agents and Learning Machines (Core-2)	3-0-0	3	20	20	60	3
4	EEIT5022S	Program Elective 1	3-1-0	4	20	20	60	3
5	EEIT5031T	Program Elective 2	3-0-0	3	20	20	60	3
6	EEIT5061S	Open Elective-1	3-0-0	3	20	20	60	3
7	EEIT 5011P	Principles of IoT (Laboratory -1)	0-0-2	1	60%CI	Ē	40	-
8	EEIT 5012P	Intelligent Agents and Learning Machines (Laboratory-2)	0-0-2	1	60%CI	Е	40	-
9	EEIT5031P	Program Elective 2 (Laboratory-3)	0-0-2	1	60%CI	E	40	-
10	MTEC5081L	Liberal Learning	0-0-2	1	100%C	ΙΕ	-	-
		Total	28	24				

Program Elective -1	Program Elective – 2		
Embedded Systems Technology	1. Wireless Sensor Networks (EEIT5031T)		
(EEIT5022S)	2. Machine Vision (EEIT5032T)		
2. Modern Sensors and Transducers	3. Filtering Techniques (EEIT5033T)		
(EEIT5023S)			
3. Biocomputing (EEIT5024S)			

Open Elective – 1	Liberal Learning-1 (MTEC5081L)
1. Artificial Neural Networks and Machine	Problem Solving and Critical thinking
Learning (EEIT5061S)	2. Indian Knowledge System
-	3. Yoga and Stress Management
	4. Corporate Culture and Organizational learning
	5. Business Administration
	6. German
	7. French
	8. Defence
	9. Information Science

Abbreviations: L: Lecture, T: Tutorial, P: Practical, TA: Teacher Assessment/Term work Assessment, MST: Mid semester Test ,ESE: End semester Written Examination, CIE: Continuous In-semester Evaluation

SEMESTER II

	Scheme of Instruction Scheme of Evaluation							
S. No	Course Code	Course Title	L-T-P	Credits	TA	MST	ESE	ESE hours
1	EEIT5002S	Research Methodology &IPR (Mandatory Learning)	3-0-0	3	20	20	60	3
2	EEIT5013T	IoT Security (Core-1)	3-1-0	4	20	20	60	3
3	EEIT5014T	Industrial Internet of things (Core-2)	3-0-0	3	20	20	60	3
4	EEIT5041S	Program Elective 3	3-1-0	4	20	20	60	3
5	EEIT5051T	Program Elective 4	3-0-0	3	20	20	60	3
6	EEIT5062S	Open Elective -2	3-0-0	3	20	20	60	3
7	EEIT5013P	IoT Security (Laboratory - 4)	0-0-2	1	60%CIE		40	-
8	EEIT5014P	Industrial Internet of things (Laboratory -5)	0-0-2	1	60%CIE	,	40	-
9	EEIT5051P	Program Elective 4 (Laboratory - 6)	0-0-2	1	60%CIE	,	40	-
10	MTEC5082L	Liberal Learning	0-0-2	1	100%CI	E	-	-
	Total 28 24							

Program Elective 3	Program Elective 4			
Data Analytics and Visualization	IoT Design for Connected Health Care			
(EEIT5041S)	(EEIT5051T)			
2. Real Time Embedded systems design and	2. Edge Computing (EEIT5052T)			
Analysis (EEIT5042S)	3. IoT Applications and Web Development			
3. Industrial IoT for Smart Cities	(EEIT5053T)			
(EEIT5043S)				

Open Elective-2	Liberal Learning-2 (MTEC5082L)
1. Mathematical foundation course for data	1. Agriculture
analytics (EEIT5062S)	2. Holistic health
	3. Political science
	4. Computerised Modern Film Making
	5. Interior design
	6. Introduction to Japanese Language and Culture

Abbreviations: L: Lecture, T: Tutorial, P: Practical, TA: Teacher Assessment/Term work Assessment, MST: Mid semester Test, ESE: End semester Written Examination, CIE: Continuous In-semester Evaluation

SEMESTER III

		Scheme of Instruction	Scheme of Evaluation		
S.	Course	Course Title	L-T-P	Credits	
No	Code				
1	EEIT5091D	Skill Based Course (Project		5	100%CIE
		Stage -I)			
2	EEIT5092D	Skill Based Course (Project		5	100%CIE
		Stage -II)			
3	EEIT5101S	Self-Learning Course -1	1-0-0	1	100% ESE of 3 hours or credit transfer
4	EEIT5201S	Self-Learning Course -2	1-0-0	1	100% ESE of 3 hours or credit transfer
5	EEIT5301S	Mandatory Non-Credit	2-0-0	0	100% ESE of 3 hours or credit transfer
		Course			
Total			12		

Self-Learning Course-1	Mandatory Non-Credit Course
1. Ayurvedic Inheritance of India (EEIT5101S)	Leadership and Team Effectiveness
2. Biology for engineers and other non-biologists	(EEIT5301S)
(EEIT5102S)	2. Applied Econometrics (EEIT5302S)
3. Human resource planning (EEIT5103S)	3. National Security Policy of India
4. Key to recognising cyber bullying (EEIT5104S)	(EEIT5303S)
5. Cooperation vs. competition (EEIT5105S)	4. Entrepreneurship (EEIT5304S)
Self-Learning Course-2	5. Spatial Statistics and Spatial
1.Customer Relationship Management EEIT5201S)	Econometrics (EEIT5305S)
2.Patent Search for Engineers and Lawyers	6. Military history of India (EEIT5306S)
(EEIT5202S)	7. Human rights and Indian Constitutions
3.Design Thinking - A Primer (EEIT5203S)	(EEIT5307S)
4.Assessment in democratic classroom (EEIT5204S)	8. Public Speaking (EEIT5308S)
5.Media and information disorder (EEIT5205S)	9. Wars in post Independent India
	(EEIT5309S)
	10. Consumer Behaviour (EEIT5310S)

SEMESTER IV

		Scheme of Instruction	Scheme of Evaluation		
S.	Course	Course Title	L-T-P	Credits	
No	Code				
1	EEIT5093D	Skill Based Course (Project		5	100%CIE
		Stage -III)			
2	EEIT5094D	Skill Based Course (Project		7	100%CIE
		Stage -IV)			
		Total		12	

SEMESTER-I

Programme Name	M. Tech. (IoT), SEMESTER I
Course Code	EEIT5001S
Course Title	COMPUTATIONAL METHODS

COURSE OBJECTIVES

- After completion of this course, students should be able to
- Develop mathematical models of lower-level engineering problems.
- Learn how to curve fit (interpolation and regression) discrete data.
- Understand and solve problems using various transform techniques.
- Make use of various optimization Techniques.
- Earn how to analyse algorithms using various methods

COURSE OUTCOMES

- Understand the concept and steps of problem solving mathematical modelling, solution and implementation.
- Knowledge and understanding of, and the ability to use, mathematical techniques.
- Ability to understand and apply mathematical reasoning in several different areas of mathematics.
- Describe apply and analyse complexity of greedy and dynamic programming strategy.

Overview

Module I: Review of Numerical Techniques

Newton's divided difference, interpolation polynomials, Lagrange interpolation polynomials, Linear and non-linear regression, multiple linear regression, general linear least squares

Module II: Transform Techniques

Orthogonal/Unitary transform, Fourier transform, Laplace transform, Z Transform, Applications of these transform.

Module III: Optimization Techniques for Engineers

Single Variable Optimization, Multi-Variable Optimization with equality and inequality constraints, Line searches, Steepest descent method, Conjugate gradient method, Quasi Newton method, Penalty function method

Module IV: Analysis of Algorithms

- a) Greedy Method Approach: General Method, Single source shortest path: Dijkstra Algorithm, Fractional Knapsack problem, Job sequencing with deadlines, minimum cost spanning trees: Kruskal and Prim's algorithms.
- **b)** Dynamic Programming Approach: General Method, Multistage graphs, Single source shortest path: Bellman Ford Algorithm. All pair shortest path: Floyed Warshall algorithm, Assembly line scheduling problem0/1 knapsack Problem, Travelling Salesperson problem, Longest common subsequence.

Reference books

- 1. "Numerical Methods for Engineers', Steven C. Chapra and Raymond P. Canale, McGraw Hill, 8th edition (29October 2021)
- 2. "Operations Research An Introduction", Hamdy A.TAHA, Pearson Education; Tenth edition (31 August 2019)
- 3. "Numerical Methods for Engineers", Santosh Gupta, New age international publishers 4th edition (01 August2019)
- 4. "Introduction to Algorithms", T. H. Cormen, C.E. Leiserson, R.L.Rivest, and C. Stein, 4th Edition, PHI Publication, (April 5, 2022).
- 5. "Fundamentals of computer Algorithms", Ellis Horowitz, Sartaj Sahni, S. Rajsekaran, University Press, 2ndedition, (4th September 2018)

Programme Name	M. Tech. (IoT), SEMESTER - I
Course Code	EEIT5011T
Course Title	Principles of IoT

At the end of successful completion of the course, students will be able to

- Summarize the concepts of network connected embedded devices.
- Design suitable network architecture and use appropriate protocols for a given IOT application.
- Identify and summarize different components required for IOT applications.
- Analyse the system through Data Analytics tools.

Module I	Introduction & Basic of IoT
	Definition, Characteristics, Physical and Logical Designs, challenges,
	Technological trends in IOT, IoT Examples, M2M
Module II	IoT: Components, Communication and Networking
	Introduction to Sensing and Networking: Sensing & actuation, Wireless
	Senor network, Senor nodes, Communication Protocols, M2M
	Communication, Networking Hardware, Networking Protocols.
Module III	IoT System Management
	Network Operator Requirements, IoT Platform Design Specification -
	Requirements, Process, Domain Model, Service, IoT Level, Function,
	Operational view, Device and Component Integration, Application
	development.
Module IV	Networking and Computing
	File Handling, Python Packages for IoT, IoT Physical Servers – Cloud
	Storage Models, Communication APIs.
Module V	IoT Clouds and Data Analytics
	RESTful Web API, Amazon Web Services for IoT, Apache Hadoop, Batch
	Data Analysis, Chef, Chef Case Studies, Puppet, NETCONF-YANG.
Module VI	IoT Applications
	Case studies: smart cities, smart home, connected vehicles, Industrial IOT.

REFERENCE BOOKS:

- 1. Kamal, R.,"Internet of Things Architecture and Design Principles," 1st Edition, Mcgraw Hill,2017.
- 2. Simone Cirani," Internet of Things- Architectures, Protocols and Standards", WILEY,2018.
- Alessandro Bassi," Enabling Things to Talk- Designing IoT solutions with the IoT Architectural Reference Model", Springer,2013.

Programme Name	M. Tech. (IoT), SEMESTER - I
Course Code	EEIT5011P
Course Title	Principles of IoT (LAB)

At the end of successful completion of the course, students will be able to

- Students should be able to do Embedded C programming and Python Programming.
- Students should be able to perform experiments on different development boards.

Module I	Overview (Any three practical's/ Programs)
	Embedded Software Development Tools: -
	Keil μ vision 3 and 4 project management, Study How to create Embedded
	Project, Compile and Test Project for 8051 and testing of 8051 based
	projects on Target Board, Programming of Flash Memory
Module II	Python Programming (Any three practical's/ Programs)
Module III	Arduino Programming (Any three practical's/ Programs)
	Arduino Programming, Integration of Sensors and Actuators with Arduino,
	Raspberry Pi, Implementation of IoT with Raspberry Pi.
Module IV	Project work

REFERENCE BOOKS:

- 1. Kamal, R.," Internet of Things Architecture and Design Principles", 1st Edition, Mcgraw Hill,2017.
- 2. Simone Cirani," Internet of Things- Architectures, Protocols and Standards", WILEY.2018.
- Alessandro Bassi," Enabling Things to Talk- Designing IoT solutions with the IoT Architectural Reference Model", Springer, 2013.

Programme Name	M. Tech. (IoT), SEMESTER – I
Course Code	EEIT5012T
Course Title	Intelligent Agents & Learning Machines

At the end of successful completion of the course, students will be able to:

- Comprehend concepts of intelligent agents
- Apply artificial intelligence, machine learning and statistical algorithms for IOT systems
- Develop a toolbox of algorithms that they can implement
- Develop IoT applications using machine learning algorithms & tools.

This course is aimed at introducing and developing IoT applications using machine learning algorithms & tools. It will provide a foundational understanding of how artificial intelligence, machine learning and statistical algorithms work. Students will have can use on their own datasets after they leave the course.

Module I	Intelligent Agents
	Introduction, Agents & environments, Concept of rationality, Structure of
	agents, Simple reflex agents, Model-based reflex agents, Goal based agents,
	Utility based agents, learning agents, learning processes (supervised,
	unsupervised, semi- supervised/reinforcement learning), Learning tasks,
	Distance metrics
Module II	Artificial Neural Networks
	Biological neuron, Models of a neuron, Artificial Neural Networks (ANN);
	Rosenblatt's perceptron, Perceptron convergence theorem, Typical
	applications of ANNs: Bayesian Classification, Function Approximation,
	Forecasting, Control, Optimization,
Module III	Model Building through Regression
	Linear regression model, Maximum a posteriori estimation of the parameter
	vector, Relationship between regularized least-square estimation and MAP
	estimation, Bias-variance dilemma,
	Regularization (Ridge, Lasso & Elasticnet)
Module IV	Unsupervised Learning
	K-means clustering, Expectation maximization algorithm, Winner-takes-all
	networks; Hamming networks; Maxnet; Simple competitive learning;
	Vector-Quantization; Counter propagation networks; Adaptive Resonance
	Theory; Kohonen's Self-
3.6 1 1 37	organizing Maps; Principal Component Analysis
Module V	Classical and Theoretical ML Topics
	Concept Learning (also called Learning from Examples), Decision Tree
	Learning, Decision List Learning, Reinforcement learning, Oracle Based
	Learning, Probably Approximately Correct (PAC)
Module VI	Model, Boosting Associated Models and Optimization Methods
Module VI	Hopfield Networks, Brain-in-a-Box network; Boltzmann machine;
	Hopfield Networks for-TSP, Solution of simultaneous linearequations;
	Iterated Gradient Descent; Simulated Annealing; Genetic Algorithm.
	production Descent, Simulated Afficiating, Ochetic Algorithm.

Reference Books:

- 1. Simon Haykin, "Neural Networks A Comprehensive Foundation", Macmillan Publishing Co., New York, 1994
- 2. A Cichocki and R. Unbehauen, "Neural Networks for Optimization and Signal Processing", John Wiley and Sons, 1993.
- 3. J. M. Zurada, "Introduction to Artificial Neural Networks", (Indian edition)Jaico Publishers, Mumbai, 1997.
- 4. Stuart Russell and Peter Norvig, "Artificial Intelligence- A Modern Approach", (Third Edition), Prentice Hall, 2010.
- 5. Tom Mitchell, "Machine Learning", McGraw-Hill, 1997

Programme Name M. Tech. (IoT), SEMESTER – I	
Course Code	EEIT5012P
Course Title	Intelligent Agents & Learning Machines LAB

COURSE OBJECTIVE:

- The course is designed to introduce the field of artificial neural networks systems and machine learning.
- The course will give the student the practical and implementation aspects of data processing algorithms.

COURSE OUTCOME:

- Students will be able to implement basic supervised learning algorithms.
- Students will be able to use algorithms for unsupervised methods.
- Students will be able to describe how statistical models work.
- Students will be able to develop IoT applications using machine learning algorithms and tools.

COURSE CONTENTS:

Module I	Intelligent Agents
Module II	Artificial Neural Networks
Module III	Model Building through Regression
Module IV	Unsupervised Learning
Module V	Classical and Theoretical ML Topics
Module VI	Associated Models and Optimization Methods

Reference Book:

- 1. Simon Haykin, "Neural Networks and Learning Machines", Pearson Publication, New Delhi, 2012.
- 2. Stuat Russell and Peter Norvig, "Artificial Intelligence- A Modern Approach", (Third Edition), Prentice Hall, 2010

Programme Name	M. Tech. (IoT), SEMESTER – I (Elective-I)
Course Code	EEIT5022S
Course Title	Embedded Systems Technology

COURSE OUTCOMES

At the end of successful completion of the course, students will be able to

- Describe the hardware and software architecture of embedded system.
- Identify the necessary communication Interface for the embedded system.
- Design and develop embedded systems
- Implement embedded systems for given applications

Module I	Introduction to Embedded system
	Introduction To Embedded Systems, Embedded Systems Vs General
	Computing Systems, History of Embedded Systems, Classification,
	Major Application Areas, Embedded Processor Requirements,
	Features, Types, RISC Processors, Harvard Architecture, Super
	Harvard Architecture, Selection of Processors & Microcontrollers.
Module II	Architecture of Embedded System Processor
	Embedded processor models, ARM core processor, Application
	specific processor like network processors, multimedia processors,
	industrial processors, superscalar processor, Advanced RISC
	processors.Architecture Of Embedded OS, Categories of Embedded
	OS, Application Software, Communication Software, Development
	and Testing Tools
Module III	Communication Interfaces
	Need For Communication Interfaces, OSI Reference Model, Basic Of
	Networks, Network Topology, RS232/UART, RS422/RS485, USB,
	Infrared, Ethernet, IEEE 802.11,
	Bluetooth, SPI, I2C, CAN, Wifi, FlexRay, LIN Bus, Zigbee.
Module IV	Rapid prototyping
	Arduino platform, hardware and software, Sensor's modules, Robo
	controlmodules, 3D printing module, ADC module, wearablesystems.
	etc.
Module V	Embedded GUI interfacing
	Arduino based graphic LCD, Touch screen, joy stick, VGA camera
	interfacing and programming in Python. Creative applications
Modul - X7	of Arduino.
Module VI	Design Examples & Case Studies of Embedded System District Theorem and the New York Card DE Top
	Digital Thermometer, Navigation Systems, Smart Card, RF Tag.

ReferenceBooks:

- 1. David Simon, "An embedded Software Primer" PearsonPublication, 2021.
- 2. Frank Vahid, "Embedded system A unified HardwareSoftware Introduction" John Wiley and Sons,2005.
- 3. Tammy Noergaard," Embedded System Architecture", Elsevier publication, 2014.

- 4. Prasad —Embedded Real time systems | Dream tech WileyPublication.2003
 5. Embedded Systems- Architecture, Programming and Design | 3rd Edition Paperback 1 July 2017

Programme Name	M. Tech. (IoT), Semester I (Elective-I)
Course Code	EEIT5023S
Course Title	MODERN SENSORS AND TRANSDUCERS

COURSE OUTCOMES

After learning the course students should be able to:

- Classify and characterize different types of transducers and sensors.
- Identify transducers and sensors for measurement of various quantities.
- Analyse the use of transducers and sensors for various applications in electronics engineering.
- Design schematic diagrams and circuits using transducers and sensors for various applications.

Module I	Introduction	
Module 1		
	Measurement systems, Basic electronic measuring system, Classification of transducers, General transducer characteristics, Criteria for transducer and	
	sensor selection.	
Module II	Resistive, Capacitive and Inductive Transducers	
Wiodule II	Resistance Potentiometers-Principles of operation, construction,	
	theory, advantages and disadvantages, applications of Potentiometers Strain gauges, (metallic and semi-conductor type) Resistance Thermometer and Thermistors. Types of Inductive transducer, Principles of operation, construction, Advantages & disadvantages and applications. Various variable Inductive Transducers, LVDT (Linear variable differential transformer). Types of capacitive transducer, Principles of operation, construction, advantages, disadvantages and applications of capacitive transducers.	
Module III	Elastic and Active Transducer	
	Principle of operation, construction, theory, advantages and disadvantages and applications of following transducers: Thermocouple, Piezo-electric transducer. Spring bellows, diaphragm, bourdon tube – their special features and application.	
Module IV	Modern Sensor	
	Interface Electronic Circuits, Detectors of Humans, Force and Strain, Pressure Sensors, Flow Sensors, Microphones, Humidity and Moisture Sensors, Chemical and Biological Sensors.	
Module V	Capacitive Sensors	
	Capacitive sensors: variable distance-parallel plate type, variable area- parallel plate, serrated plate/teeth type and cylindrical type, variable dielectric constant type. Stretched diaphragm type: microphone, Proximity sensor.	
Module VI	Thermal sensors	
	Various types and applications	
Module VII	Magnetic sensors:	
	Sensors based on Villari effect: Wiedemann effect, Thomson effect, Hall effect and applications Radiation sensors.	
Module VIII	Introduction to smart sensors	
	Introduction ,Components of smart sensors ,Architecture and evolutions of smart sensors, Advantages and disadvantages, Industrial applications	

REFERENCE BOOKS

- 1. D. Patranabis, "Sensor & Transducers", Murthy Prentice Hall India Learning Private Limited, 2nd edition, 2009.
- **2.** Jacob Fraden," Handbook of Modern Sensors", Physics, Designs, and Applications, Fifth Edition, Spinger, 2016.
- 3. H. K. P. Neubert, "Instrument Transducers", Oxford University press, 1975.
- **4.** E. A. Doebelin," Measurement systems: Application & design", McGraw-Hill Higher Education, 5th edition, 2003.

Programme Name	M. Tech (IoT), Semester-I
	(Elective-I)
Course Code	EEIT5024S
Course Title	Biocomputing

COURSE OUTCOMES

After successful completion of this course, students will be able to

- Comprehend utility of learning algorithms in healthcare
- Analyze and interpret nature of clinical data
- Understand structure of healthcare information system and flow
- Apply learning algorithms on medical data for knowledge representation and inference.

COURSE CONTENTS

Module I	Introduction
	Nature of clinical data, standards, data in narrative texts, gene, expression and protein data, architecture of healthcare information systems
Module II	Probabilistic and graphical models
	Information theoretic metrics, decision support via probabilities and utilities, decision support via expert systems, modelling and Bayesian network, learning Bayesian networks, classical machine learning algorithms, feature extraction and mapping, local alignment (BLAST), Comparative Genomic Analysis of Gene Regulation, Clustering, Model Selection, and BIC Scores
Module III	Knowledge representation and inference
	Propositional and first order logic, rule-based systems, graph search, constraint satisfaction, privacy and security issues, medical expert systems, Genome analysis, RNA-sequence Analysis: Expression, Isoforms, modellingbiological functions, Modelling and Discovery of Sequence Motifs (Gibbs Sampler, Alternatives), Probabilistic Grammatical Models of RNA Structure
Module IV	Adleman Technique
	Introduction, self-assembly, nanodevices, Quoram sensing, biological computational device, engineered and naturally occurring molecular switches, ciliates, molecular gates and circuits, building and deciphering networks,

Reference books:

- 1. Jones, Neil C., and Pavel Pevzner, "An Introduction to Bioinformatics Algorithms", MIT Press, 2004. ISBN:9780262101066.
- 2. Adleman, L. M. "Molecular computation of solutions to combinatorial problems." Science 266, November 11, 1994,1021-4.
- 3. Shortliffe, E. H., L. E. Perreault, G. Wiederhold, and L. M. Fagan,"Medical Informatics: Computer Applications in Health Care and Biomedicine", 2nd ed.New York, NY: Springer, 2003

- 4. Yurke, B., A. J. Turberfield, A. P. Mills, F. C. Simmel, and J. L.Neumann. "ADNA-fueled molecular machine made of DNA." Nature 406 (August 10, 2000): 605-8
- 5. Schwartz, W. B., R. S. Patil, and P. Szolovits. "Artificial intelligence in medicine: where do we stand." New England Journal of Medicine pp: 685-688,1987.
- 6. National Center for Biotechnology Information. "The Statistics of Sequence Similarity Scores." BLAST Tutorial.
- 7. Li, Heng, and Richard Durbin. "Fast and Accurate Short Read Alignment with Burrows—wheeler Transform." Bioinformatics 25, no. 14, pp1754–60,2009.

Programme Name	M. Tech. (IoT), SEMESTER – I
	(Elective-II)
Course Code	EEIT5031T
Course Title	WIRELESS SENSOR NETWORKS

COURSE OUTCOMES

After successful completion of this course, students should be able to

- Describe the concepts, network architectures and applications of ad hoc and wireless sensor networks.
- Analyze the protocol design issues of ad hoc and sensor networks.
- Explain the concepts of communication, MAC, routing protocols and also study about the naming and addressing in WSN.
- Describe routing protocols for ad hoc and wireless sensor networks with respect to some protocol design issues.

Module I	Overview Of Wireless Sensor Networks
	Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless
	Sensor Networks, Advantages of sensor networks- energy advantage, detection
	advantage, Sensor network applications- Habitat Monitoring, Tracking
	chemicalplumes- Smart transportation.
Module II	Architectures
	Single-Node Architecture - Hardware Components, Energy Consumption of
	Sensor Nodes, Operating Systems and Execution Environments, Network
	Architecture -Sensor Network Scenarios, Optimization Goals and Figures of
	Merit, Gateway Concepts.
Module III	Networking Sensors
	Physical Layer and Transceiver Design Considerations, MAC Protocols
	forWireless Sensor Networks, Low Duty Cycle Protocols and Wakeup
	Concepts- S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts,
	Address and Name Management, Assignment of MAC Addresses, Routing
	Protocols- Energy-Efficient Routing, Geographic Routing.
Module IV	Infrastructure Establishment
	Topology Control, Clustering, Time Synchronization, Localization and
	Positioning, Sensor Tasking and Control.
Module V	Sensor Network Platforms and Tools
	Sensor Node Hardware- Berkeley Motes, ProgrammingChallenges, Node- level
	software platforms, Node-level Simulators, State-centric programming.

REFERENCE BOOKS:

- 1. Holger Karl & Andreas Willig, "Protocols and Architectures for WirelessSensor Networks", Wiley, 2005.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, and Applications", Wiley, 2007.
- 4. Anna Hac, "Wireless Sensor Network Designs", Wiley, 2003.
- 5. Philip Levis, "TinyOS Programming", Cambridge University Press,2009.
- 6. Anna Ha'c, "Wireless Sensor Network Designs", Wiley, 2005

Programme Name	M. Tech. (IoT), SEMESTER – I
	(Elective-II)
Course Code	EEIT5031P
Course Title	WIRELESS SENSOR NETWORKS (LAB)

COURSE OUTCOMES

After successful completion of this course, students should be able to

- Familiarize with protocol, design requirements, algorithms, and the cloud platform to meet the industrial requirement.
- Establish the concept of addressing in WSN.
- To design and connect, hardware platforms and software frameworks used to realize dynamic Wireless sensor network.

Module I	Wireless Sensor Networks (Any three practical's/ Programs)
	Network IP and basic network command and network configuration Commands, Routing Protocols, Simulation of Four Node Point to Point Network. Network simulators used for wireless Ad Hoc and Sensor Networks.
Module II	Architecture of WSN's (Any three practical's/ Programs)
	Demonstrate one small network simulation script. Study various trace file formats of network simulators.
Module III	Protocols for WSN's (Any three practical's/ Programs)
	To implement and compare various MAC layer protocols. To implement and compare AODV and DSR routing algorithms in MANET. To implement DSDV routing algorithms in MANET
Module IV	Protocols Management for WSN's (Any three practical's/ Programs)
	To implement signal strength-based link management routing protocols. To calculate and compare average throughput for various TCP variants. To implement and compare various routing protocols for wireless sensor networks.
Module V	Autonomic sensing and secure protocol design
	Hands-on-experience on sensor network simulators (preferably: NS3 and QualNet).

REFERENCE BOOKS:

- 1. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", Wiley, 2005.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", Wiley, 2007.
- 4. Anna Hac, "Wireless Sensor Network Designs", Wiley, 2003.
- 5. Philip Levis, "TinyOS Programming", Cambridge University Press, 2009.
- 6. Anna Ha'c, "Wireless Sensor Network Designs", Wiley, 2005

Programme Name	M. Tech. (IoT), SEMESTER – I (Elective-II)
Course Code	EEIT5032T
Course Title	Machine Vision

At the end of successful completion of the course, students will be able to:

- Comprehend concepts of machine vision
- Apply binary machine vision algorithms for segmentation and analysis
- Explain statistical approaches for pattern recognition and discrimination
- Analyse morphological models for vision
- Describe Facet model and apply segmentation techniques to images

Module I	Machine Vision: Overview
	Introduction, recognition methodology, conditioning, labeling, grouping ,extracting, matching
Module II	Binary Machine Vision
	Introduction, thresholding (within class variance minimization, Kullback information distance minimization), connected component labelling; operators, algorithms, signature segmentation and analysis, region analysis, region properties, spatial moments, mixed spatial grey level moments, signature properties
Module III	Statistical Pattern Recognition
	Bayesian rules: maximum utility model for pattern discrimination, economygain matrix, maximum decision rule, decision rule error, reserving judgment, nearest neighbour rule, binary decision tree classifier, decision rule estimation
Module IV	Mathematical Morphology
	Binary morphology; dilation, erosion, hit-and-miss transform, opening, closing, connectivity, gray scale morphology, Umbra homomorphism, grey scale opening and closing, medians, bounding second order derivatives, distance transforms and recursive morphology, medial axis analysis, morphological sampling theorem
Module V	The Facet model
_	Introduction, relative maxima, sloped Facet parameter and estimation, Facet-based peak noise removal, Bayesian approach to edge detection, Zero-crossing edge detector, directional derivative gradient operator, corner detection, isotropic derivatives, ridges and ravines
Module VI	Image Segmentation
	Measurement-space-guided spatial clustering; thresholding, multidimensional clustering, region growing; single linkage, hybrid linkage, centroid linkage, hybrid linkage combinations, spatial clustering, split and merge, rule-based segmentation, motion-based segmentation, arc extraction, linking one-pixel-wide edges/lines, Hough transform, Iso-data segmentation

ReferenceBooks:

- 1. Robert Haralick and Linda Shapiro, Computer and Robot Vision, Addison-Wesley Publishing Company, 1992.
- 2. Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. New York, NY: John Wiley & Sons, 2000.

Programme Name	M. Tech. (IoT), SEMESTER – I
Course Code	EEIT5032P
Course Title	Machine Vision Lab

At the end of successful completion of the course, students will be able to:

- Comprehend concepts of machine vision
- Apply binary machine vision algorithms for segmentation and analysis
- Explain statistical approaches for pattern recognition and discrimination
- Analyse morphological models for vision
- Describe Facet model and apply segmentation techniques to images

Module I	Statistical Pattern Recognition
	Any practical on
	Bayesian classifier,
	 nearest neighbour classier,
	binary decision tree classifier
Module II	Mathematical Morphology
	Practical on
	Dilation, erosion
	opening, closing
	Hit-miss transform
	Gray scale operation
	Medial axis analysis
Module III	The Facet model
	Practical on
	Edge detection using Bayesian
	Zero-crossing edge detector
	Corner detector
	Ridge and ravine detector
Module IV	Image Segmentation
	Practical on
	Multidimensional spatial clustering
	Rule based segmentation
	Motion based segmentation
	Arc extraction
	Hough transform
	Iso data transform

Reference Books:

- 1. Robert Haralick and Linda Shapiro, Computer and Robot Vision, Addison- Wesley Publishing Company, 1992.
- 2. Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. New York, NY: John Wiley & Sons, 2000.

Programme Name	M. Tech. (IoT), SEMESTER – I
	(Elective-II)
Course Code	EEIT5033T
Course Title	Filtering Techniques

COURSE OUTCOMES

After successful completion of this course, students should be able to

- Analyse discrete-time signals in the time domain and frequency domain, using different transforms.
- Design various types of Digital Filters
- Comprehend DSP processor architecture for filtering applications
- Describe predictive and adaptive filters with applications

Module I	Introduction
	Review of Discrete Time Signals, representation of signals on orthogonal basis; A/D and D/A conversion: sampling and quantization, antialiasing andsmoothening filters, reconstruction of signals, Discrete system attributes, Analysis of discrete LTI systems, Z-Transform, Inverse Systems
Module II	Frequency domain analysis
	Frequency domain characteristics of digital LTI systems, frequency response, Discrete Time Fourier Transform and Discrete Fourier Transform,Fast Fourier Transform algorithm, Correlation functions and spectra
Module III	Digital filters
	LTI systems as frequency selective filters, digital resonators, notch filters, comb filters, Concept of linear phase and distortion, Frequency SamplingTechniques, Park-McClellan's method, Hilbert transformer, frequency transformation in digital domain
Module IV	Linear Prediction and Adaptive Filters
	Random signals in sensors, correlation functions, innovation representation of random process, forward and backward linear prediction, Levinson- Durbin algorithm, Wiener filters for filtering and prediction, adaptive filters;Direct form FIR filters (LMS and RLS techniques)
Module V	DSP Processors
	DSP processor architecture, Software developments, Selections of DSP processors, Implementation considerations, finite word length effects, real time implementation, Hardware interfacing TMS 320C54XX, Applications of Design using fixed point and floating point implementations: FIR filter
Module VI	Applications
	Case studies; applications of filtering to wireless sensors data, channel equalization, echo-cancellation in data transmission with demonstration, noise cancelling.

REFERENCE BOOKS:

- 1. John G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 2007.
- 2. A.V. Oppenheim and Schafer, "Discrete Time Signal Processing", PrenticeHall,2009.
- 3. L.R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1975.
- 4. J.R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1989.
- 5. Hall D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss," Digital Signal Processing", JWiley and Sons, Singapore, 1992.
- 6. Salivahanan S, Vallavaraj A, Gnanapriya, "Digital Signal Processing", Mc GrawHill,2017.

Programme Name	M. Tech. (IoT), SEMESTER – I
Course Code	EEIT5033P
Course Title	Filtering Techniques Lab

At the end of successful completion of the course, students will be able to:

- Analyse discrete-time signals in the time domain and frequency domain, using different transforms.
- Design various types of Digital Filters
- Comprehend DSP processor architecture for filtering applications
- Describe predictive and adaptive filters with applications

Module I	Introduction
	Any practical on
	Z transform
	LTI system
Module II	Frequency domain analysis
	Practical on
	Discrete Time Fourier Transform
	Discrete Fourier Transform,
	Fast Fourier Transform algorithm
Module III	Digital filters
	Practical on
	 Frequency Sampling Techniques,
	Park-McClellan's method,
	Hilbert transformer
Module IV	Linear Prediction and Adaptive Filters
	Practical on
	 Levinson- Durbin algorithm,
	 Wiener filters for filtering and prediction, adaptive filters;
	Direct form FIR filters (LMS and RLS techniques)
Module V	DSP Processors
	Practical on:
	Implementation of one algorithm on a DSP processor

REFERENCE BOOKS:

- 1. John G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 2007.
- 2. A.V. Oppenheim and Schafer, "Discrete Time Signal Processing", PrenticeHall,2009.
- 3. L.R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1975.
- 4. J.R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1989.
- 5. Hall D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss," Digital Signal Processing", JWiley and Sons, Singapore, 1992.
- 6. Salivahanan S, Vallavaraj A, Gnanapriya, "Digital Signal Processing", Mc Graw Hill,2017.

Programme Name	M. Tech. (IoT), SEMESTER-I (Open Elective)
Course Code	EEIT5061S
Course Title	ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING

COURSE OBJECTIVE

The course is designed to introduce the field of neural network systems and Artificial Neural Networks. The basic concepts of machine learning are also the main goal of this subject.

COURSE OUTCOME

Students will be able to understand the fundamental concepts of the neural network systems. This area new field of research thus students will get to know about the recent trends in research fields.

Module 1: Introduction: Biological neurons and memory

Structure and function of a single neuron; Artificial Neural Networks (ANN); Typical applications of ANNs: Classification, Clustering, Vector Quantization, Pattern Recognition, Function Approximation, Forecasting, Control, Optimization.

Module 2: Supervised Learning

Single-layer networks; Perceptron-Linear separability, Training algorithm, Limitations; multi-layer networks-Architecture, Back Propagation Algorithm (BTA) Adaptive Multi-layer networks-Architecture, training algorithms; Recurrent

Networks; Feed-forward networks; Radial-Basis-Function (RBF) networks;

Module 3: Unsupervised Learning

Winner-takes-all networks; Hamming networks; Maxnet; Simple competitive learning; Vector-Quantization; Counter propagation networks; Adaptive ResonanceTheory; Kohonen'sSelf-organizing Maps; Principal Component Analysis.

Module 4: Associated Models and Optimization Methods

Hopfield Networks, Brain-in-a-Box network; Boltzmann machine; Hopfield Networks for- TSP, Solution of simultaneous linear equations; Iterated Gradient Descent; Simulated Annealing; Genetic Algorithm.

Module 5: Introductory Material to Machine Learning and AI

Motivations for Studying ML, Supervised and Unsupervised learning, Machine Learning in the Large

Module 6: Classical and Theoretical ML Topics

Concept Learning (also called Learning from Examples), Learning from Analogy, Explanation Based Learning, Structure Learning, Reinforcement Learning, Decision Tree Learning, Decision List Learning, Oracle Based Learning, Probably Approximately Correct (PAC) Model, Boosting, Bayesian Learning: Maximum Likelihood Estimates, ParameterEstimation, Bayesian Belief Networks

Expectation Maximization as a fundamental technique, Hidden Markov Models (HMM): Motivation for Generative Models, Forward-backward Algorithm, BaumWelch Iteration, Feature Enhanced HMM.

Module 8: Maximum Entropy Markov Models (MEMM)

Motivation for Discriminative Models, Training of MEMMs (v) Introductory Optimization Based Methods: Neural Nets, Support Vector Machines, GeneticAlgorithms (v) Applications: Text Learning, Speech Processing, Data Mining, Bioinformatics

Reference Books:

- 1. Simon Haykin, "Neural Networks A Comprehensive Foundation", Macmillan Publishing Co., New York, 1994.
- 2. A Cichocki and R. Unbehauen, "Neural Networks for Optimization and Signal Processing", John Wiley and Sons, 1993
- 3. J. M. Zurada, "Introduction to Artificial Neural Networks", (Indian edition) Jaico Publisher, Mumbai, 1997.
- 4. Hui Jiang, "Machine Learning Fundamentals: A Concise Introduction" Cambridge University Press, 2022
- 5. Alexander Jung, "Machine Learning: The Basics (Machine Learning: Foundations, Methodologies, and Applications)" Springer, 2022

SEMESTER-II

Programme Name	M. Tech. IoT, SEMESTER II
Course Code	EEIT5002S
Course Title	RESEARCH METHODOLOGY and IPR

COURSE OBJECTIVES

After completion of this course, students should be able to

- Develop understanding of the basic framework of research process, various researchdesigns and techniques.
- Identify various sources of information for literature review and data collection
- Develop an understanding of the ethical dimensions of conducting applied research

COURSE OUTCOMES

- Understand research terminology.
- Be aware of the ethical principles of research, ethical challenges and approval processes.
- Describe quantitative, qualitative and mixed methods approaches to research.
- Identify the components of a literature review process
- Critically analyse published research

Overview:

Module 1: Review of Statistics

Concept of mean, mode, median, arithmetic mean, geometric mean, harmonic mean etc., Probability and problem solving, Distributions: Gaussian, chi-square, student-t distribution Design of experiment, Hypothesis, testing and identification, Problems on hypothesis testing

Module 2: Research Skills

What is research, why research needs to be done, Research problem formulation, Literature survey, Analysis of the problem, Experimental evaluation of the problem, Survey techniques, Statistical analysis. Writing of short and long abstracts, Writing and format of international and national journal papers, Report writing, English writing and communication skills, Power point and other presentation skills

Module 3: Research theory and Practice

Structuring the research project, research ethics, finding and reviewing the literature.

Module 4: Data Collection and its Analysis

Data sources, methods and approaches, the nature of data, collecting and analysing secondary data, collecting primary data, quantitative and qualitative data analysis, sampling and selection in qualitative research, making convincing arguments with qualitative data.

Recommended Readings

- "Fundamentals of Research Methodology" 1st edition Dr Jayanta Kumar Nayak, Dr Priyanka Singh, SSDN Publishers and Distributers, 2015
- "Qualitative Researching": Jennifer Mason, 2nd edition, SAGE Publication, 2002
- "Research methods: the basics": Walliman and Nicholas, Taylor and Francis India, 2021
- "The Essential Guide to Doing Research", 4th edition, Zina O' Leary, SAGE publications,2021
- "Research Methodology Handbook. Introductory Guide to Research Methods for SocialResearch": Stuart MacDonal & Nichola Headlam, CLES, 2008.

Programme Name	M. Tech. IoT, Semester-II
Course Code	EEIT5013T
Course Title	IoT Security

COURSE OUTCOME

At the end of successful completion of the course, students will be able to:

- Comprehend basics of IoT, Industrial IoT and Operational Technology (OT)vulnerabilities, threats & risks Realize IoT security requirements and management tools Comprehend ways to secure IoT

	COURSE CONTENTS
Module I: Ir	ntroduction to Operational Technology (OT)
	Overview of industrial control systems (ICS), ICS operation & components, Perdue
	model, SCADA systems, Cyber-physical systems (CPS) & IoT
Module II	IoT Vulnerabilities, Threats & Risks
	STRIDE methodology, OWASP Iot vulnerabilities, Privacy & trust, Insufficient
	authentication/authorization, Insufficient access control, Attackson IoT data, Attacks
	on IoT layered architecture, Security concerns in IoT applications, Security concerns
	in SCADA
Module III	IoT Pen testing
	Active vulnerability analysis tools, Port scanning, Operating system fingerprinting and
	version scanning, Penetration testing, Attack surface mapping
Module IV	Exploitation Tools & Frameworks
	Exploitation using I2C & SPI, JTAG debugging and exploitation, Boundaryscan,
	Test access ports
Module V	Firmware Reverse Engineering
	Understanding firmware, Extracting firmware, Manual firmware extraction,
	Automated file system extraction, Firmware internals, Backdooring a
	firmware, Static & dynamic analysis
Module VI	Radio & Side Channel Attacks
	Software defined radio, Exploiting ZIGBEE & BLE, Power analysis attack,
	Invasive attack, Perturbation -attacks, Electromagnetic side channel attack, fault
	injection attack, timing attack, covert channel attacks
Reference	
1	"Securing the Internet of Things", Shancang Li, Li Da Xu, Syngress, Elsevier, 2017
2	"Security and Privacy in Internet of Things (IoTs)Models, Algorithms, and
	Implementations", Edited by Fei Hu, CRC Press, 2016
3	"Practical Internet of Things Security", Brian Russell Drew Van Duren, Packt
	Publishing, 2016
Additional	Material:
1	Research papers

Programme Name	M. Tech. IoT, Semester-II
Course Code	EEIT5013P
Course Title	IoT Security (LAB)

COURSE OUTCOME

At the end of successful completion of the course, students will be able to:

- Comprehend basics of IoT, Industrial IoT and Operational Technology (OT) vulnerabilities, threats & risks
 Realize IoT security requirements and management tools
 Comprehend ways to secure IoT

Module I	Introduction to Operational Technology (OT)
	Capture and Analyse system network traffic
Module II	IoT Vulnerabilities, Threats & Risks
	Perform foot printing, information gathering using various foot printing
	tools
Module III	IoT Pen testing
	Use Metasploit framework to exploit SCADA system
Module IV	Exploitation Tools & Frameworks
	Firmware exploitation using Jtag debugger port
Module V	Firmware Reverse Engineering
	Static firmware analysis
Module VI	Radio & Side Channel Attacks
	Dynamic Firmware Analysis; Side channel Attack
Reference Bo	ooks:
1.	"Securing the Internet of Things", Shancang Li, Li Da Xu Syngress, Elsevier, 2017
2.	"Security and Privacy in Internet of Things (IoTs)Models,
	Algorithms, and Implementations", Edited by Fei Hu, CRC Press,
	2016
3.	"Practical Internet of Things Security", Brian Russell Drew Van Duren,
	Packt Publishing, 2016
Additional M	Iaterial:
1.	Research papers

Programme Name	M. Tech. IoT, Semester-II
Course Code	EEIT5014T
Course Title	INDUSTRIAL INTERNET OF THINGS (IIOT)

COURSE OUTCOME

At the end of successful completion of the course, students will be able to:

- Understand key skills employed in the IIoT & IoRT space building applications.
 Design suitable network architecture and use appropriate learning algorithm.
 Comprehend IOT protocols
 Implement digital Twin
 Implement IOT systems for robotics

Module I	Introduction IIoT; Market Size and Potential
	Definition, IoT v IIoT, Next Generation Sensors, Sensor's calibration and
	validate sensor measurements, placement of IoT devices, sensors, low-cost
	communication system design, Top application areas include
	manufacturing, oil & gas, Embedded systems in the Automotive and
	Transportation market segment.
Module II	HoT Methodology
	Top operating systems used in IIoT deployments, Networking and wireless
	communication protocols used in IIoT deployments. Smart Remote
	Monitoring Unit, components of monitoring system, control and
	management, Wireless Sensor Networ(WSN).
Module III	Data driven Analytics of HoT
	Implementing of industrial IoT Data flow, big data and how to prepare data
	for machine learning algorithms, Machine Learning algorithms, supervised
	learning & Un-supervised learning algorithms, Basics of neural network,
	activation functions, back-propagation.
Module IV	IP and Non-IP Protocols for IoT
	WPAN, IEEE 802.15.4, Bluetooth, NFC, 6LoWPAN; RFID, Zigbee
	Wireless HART Protocol, MQTT, IP and Non-IP Protocols, REST, CoAP.
Module V	Implementing Digital Twin
	Develops a physics-based and data-driven digital equipment model to
	monitor assets and systems, Introduction to device localization and tracking;
	different types of localization techniques, Radio-Frequency Identification
	(RFID) and fingerprinting, Device diversity/heterogeneity issue in IIoT
	networks
Module VI	Internet of Robotic Things (IoRT)
	Introduction to stationary and mobile robots, Brief introduction to
	localization, mapping, planning, and control of robotic systems;
	Introduction to cloud-enabled robotics; Applications of IIoT in robotics;
	Architectures for IoRT, Examples and case studies: Open issues and
	challenges.

Reference Books:		
1	"Industry 4.0: The Industrial Internet of Things", Alasdair Gilchrist, Apress,	
	2016	
2	"Introduction to Industrial Internet of Things and Industry 4.0", Sudip	
	Misra, Chandana Roy, Anadarup Mukherjee, CRC Press, 2021	
3	"Hands on Industrial Internet of Things", Giacomo Veneri, Antonio	
	Capasso, Packt Press, 2018.	
Addition	Additional Material:	
1	Research papers	

Programme Name	M. Tech. (IoT), SEMESTER – II
Course Code	EEIT5014P
Course Title	INDUSTRIAL INTERNET OF THINGS (IIOT) (LAB)

- Students should be able to do Python programming.
- Students should be able to perform experiments on different development boards.
- Students should get introduced with application IIOT in different Fields.

Module I	Overview (Any three practical's/ Programs)	
	Interfacing sensor and actuators with any processor (8051, ARM)	
Module II	Python Programming (Any three practical's/ Programs)	
Module III	Arduino Programming (Any three practical's/ Programs)	
	Arduino Programming, Integration of Sensors and Actuators with Arduino,	
	Raspberry Pi, Implementation of IoT with Raspberry Pi.	
Module IV	Project work (Implementing on any one Protocol)	
	WPAN, IEEE 802.15.4, Bluetooth, NFC, 6LoWPAN; RFID, Zigbee	
	Wireless HART Protocol, MQTT, IP and Non-IP Protocols, REST, CoAP.	

Referen	Reference Books:		
1	"Industry 4.0: The Industrial Internet of Things", Alasdair Gilchrist, Apress,		
	2016		
2	"Introduction to Industrial Internet of Things and Industry 4.0", Sudip		
	Misra, Chandana Roy, Anadarup Mukherjee, CRC Press, 2021		
3	"Hands on Industrial Internet of Things", Giacomo Veneri, Antonio		
	Capasso,Packt Press, 2018.		
Additio	Additional Material:		
1	Research papers		

Programme Name	M. Tech. (IoT), SEMESTER – II (Elective -III)
Course Code	EEIT5041S
Course Title	Data Analytics and Visualization

After completion of this course, students will be able to

- Communicate data driven findings
- Process and transform raw data into suitable formats
- Describe statistical theories used in data analysis
- Interpret features of interest in numerical data
- Apply data analysis techniques in practical problems

COURSE CONTENTS

Module I	Introduction	
	Revision to theory of probability for data analysis using case studies, central	
	limit theorem, Review of Linear Algebra, Linear Transformations	
Module II	Data Visualization	
	Understanding experimental data, importing data, wrangling, string	
	processing, Visualization using R/Python script, data filtering and cleansing	
Module III	Statistical methods	
	Random walks and Monte Carlo simulations, Linear and Quadratic	
	Discriminants, Fisher Discriminant, Multilinear Analysis, Maximum	
	Likelihood and Bayesian Parameter Estimation, Linear	
	Discriminant/Perceptron Learning, Optimization by Gradient Descent,	
	Mixture modelling, Expectation maximization	
Module IV	Inference and Modelling	
	Sampling and error, Bayesian statistics and predictive modelling	
Module V	Data classification and clustering	
	Bayesian framework and support vector machines, Feature selection,	
	Bayesian interpretation of regularization, RBF interpolation schemes,	
	clustering, kernel-based techniques, density estimation	
Module VI	Applications	
	Information extraction and feature selection, data analysis and interpretation	
	(case studies), morphable models, Usage of GitHub to manage data science	
	projects, demonstration using R to clean, analyse, and visualize data.	
Text Books:		
1.	"Bayesian Data Analysis", Gelman, Andrew, et al 2nd edition, Chapman	
	and Hall/CRC, 2003. ISBN: 9781584883883.	
	"Introduction to Computation and Programming Using Python: With	
2.	Application to Understanding Data", Guttag, John, 2nd ed. MIT Press, 2016.	
Reference Boo	ISBN: 9780262529624.	
Reference Doc		
1.	"The Elements of Statistical Learning: Data Mining", Hastie, Trevor,	
	Robert Tibshirani, and Jerome Friedman New York, Springer,2001. "Pattern Classificatio", Duda, Richard O., Peter E. Hart, and David G. Stork.	
2.		
4.		
3.	New York, NY: John Wiley & Sons, 2000. "The Nature of Statistical Learning Theory", Vapnik, V. N Springer, 1995.	

Programme Name	M. Tech. (IoT), SEMESTER – II (Elective -III)
Course Code	EEIT5042S
Course Title	Real time Embedded Systems Design and Analysis

- Describe the hardware and software architecture of embedded system.
- Identify the necessary communication Interface for the embedded system.
- Organize the complete embedded system development project.
- Design and develop the RTES.

36 1 1 7	T () () DMOG
Module I	Introduction to RTOS
	Overview Of RTOS, Architecture of Kernel, Task & Task Scheduler, ISR,
	Semaphore, Mutex, Mailbox, Message Queues, Event Registers,
	Pipes, Signals, Timers, Memory Management, Priority Inversion Problem.
Module II	Real Time Embedded Software
	Linux, RT Linux, multiprocessor software developments, data flow graph,
	Study and programming of RTOS like RTX51, Free RTOS etc. timing
	diagram analysis for fixed and dynamic priority software services.
Module III	Real time Scheduling
	Scheduling Real-Time Tasks: Types of Schedulers Table-driven scheduling
	Cyclic schedulers EDF RMA, Priority Pre-emptive Scheduler State Machine
	for Linux and VxWorks, Comparison of Cyclic Executive, Introduction to
	Worst Case Analysis, Example of scheduling, Real-Time Scheduling and
	Rate Monotonic Least Upper Bound.
Module IV	Overview of Real-time Hardware Architectures and Software Stacks
	Embedded Linux on the Raspberry Pi ARM A-Series System-on-Chip
	processors, Tracing Linux kernel and network stack events. Best Practices for
	RTES Programming, System Integration Testing (Hardware, Firmware,
_	and Software),
Module V	Real Time Communication
	RT Services Communication and Synchronization, Performance of two Real-
	Time communication Protocols, Real time communication over network, Real
	Time database.
Module VI	Verification and Validation of RTES project
	Using Point-to-point Serial and TCP/IP for Embedded Systems, Case Studyof
	Coding for Sending Application Layer Byte Streams on A TCP/IP Network
	Using RTOS. Building a simple Linux multi-service system using POSIX
	real-time extensions on Raspberry Pi 3b using sequencing and methods to log
TD.	and verify agreement between theory and practice.
Text	
Books:	"Embadded Deal time gystems" Dressed Dresser tech Wiley Dublication 2002
1. 2.	"Embedded Real time systems", Prasad Dream tech Wiley Publication, 2003.
	"Real-Time Systems: Theory and Practice," Rajib Mall Pearson, 2008. eference Books:
Additional Ro	
1.	"Real-Time Systems Design and Analysis", Philip Laplante, 2nd Edition,
	Prentice Hall,2013.

Programme Name	M. Tech. (IoT), SEMESTER – II (Elective -III)
Course Code	EEIT5043S
Course Title	Industrial IoT for smart cities

- Identify different IoT smart cities applications with IoT architecture.
- Establish IoT connectivity of smart devices to cloud having multiple communication medium, protocols, device management and monitoring.
 Summarize different learning methods and their application in smart cities.
- Apply machine learning techniques on IOT systems

Module I	Introduction & Industry 4.0
	IoT in smart city& their distinctive advantages like smart environment, smart streetlight, smart water management, Smart Road & Traffic, Smart Parking & waste management. The Fourth Revolution, LEAN Production Systems, Smart and Connected Business Perspective, Smart Factories.
Module II	IoT Smart City Sensing and Power Management
	Smart Sensors and actuators as per requirement for Smart Cities, air quality, noise pollution measured using Electrochemical Sensors, Ultrasonic Sensors, IR, Obstacle, Proximity. IoT Data Acquisition System, Energy harvesting, Battery based systems, Power management.
Module III	Interoperability for Smart City IoT systems
	Wireless communication modules and topology such as Zigbee, Bluetooth, GSM module, Wi-fi module &Things speak (IoT Platform) cloud, Ethernet, M2M Wireless Sensor Network (WSN).
Module IV	Software Defined Network
	Arduino Programming, Integration of Sensors and Actuators with Arduino, Raspberry Pi, Implementation of IoT with Raspberry Pi.
Module V	Smart mobility
	Smart cities concept and services, traffic congestion, city energyconsumption, IoT in carriage, solution, opportunities and threats.
Module VI	Application Area of Smart cities IOT Systems
	Working principle & Use of Geographical Information System (GIS), GPS module for vehicle speed measurement. Connected Parking - LoRaWAN private network.
Text Books:	
1.	"Designing, Developing, and Facilitating Smart CitiesUrban Design to IoT Solutions", Vangelis Angelakis Springer, 2019
2.	"Introduction to IoT", S. Misra, A. Mukherjee, and A. Roy ,Cambridge University Press, 2018
Additional Ma	
	Research papers

Programme Name	M. Tech. (IoT), SEMESTER – II (Elective -IV)
Course Code	EEIT5051T
Course Title	IoT Design for Connected Health Care

- Understand and design multidisciplinary approach for design, development, simulation, and implementation of IoT health care systems.
 Apply the monitored health parameter sensor output data for further computing,
- analyzation and visualization.
- Identify and summarize remote health monitoring and Tele-health.

Module I	Introduction to IoT based Health Care	
	Introduction to IoT applications in smart healthcare& their distinctive advantage	es -
	Patient Health Monitoring System (PHMS), Tele-Health, Tele-	,
	Medicine, Tele-Monitoring, Mobile Health Things (m-health).	
Module II	IoT Smart Sensing Heath Care and Power challenge	
	parameters, Wearable ECG sensors, IoT Data Acquisition System, End	ealth ergy
Module III	harvesting, Battery based systems, Power management. Interoperability in IoT	
Wiodule III	IoT protocols –Interfacing of Zigbee module to create Wireless sensor	
	network, M2M Wireless Sensor Network, MQTT, COAP, Principle of	
	operation & Application of IoT Gateway Using Wi-Fi and Ethernet.	
Module IV	Software Defined Network	
	Arduino Programming, Integration of Sensors and Actuators with Arduino,	
	Raspberry Pi, Implementation of IoT with Raspberry Pi.	
Module V	Internet of Medical Things	
	Data Confidentially, Data Integrity, Data Protection, Security awareness, Emergebrases: Autonomous, IoT heterogeneity and ubiquity, Physicalenvironment.	gent
Module VI	Emerging Technologies for Health and Medicine	
	Virtual Reality, Augmented Reality, Artificial Intelligence, Robotics, Industry	y 4.0.
Text Books:		
1.	"Emerging Technologies for Health and Medicine: Virtual Reality, Augmented Reality, Artificial Intelligence, Internet of Things, Robotics, Industry 4.0", Dac-Nhuong Le Wiley, 2019	
2.	"Introduction to IoT". S. Misra, A. Mukherjee, and A. Roy Cambridge University Press, 2017	
3.	"The Internet of Things: Do-It-Yourself at Home Projectsfor Arduino, Raspberry Pi and Beagle Bone Black", Donald Norris, 2014	
Additional Ma		
	Research papers	

Programme Name	M. Tech. (IoT), SEMESTER – II (Elective IV)
Course Code	EEIT5051P
Course Title	IoT Design for Connected Health Care (LAB)

- Students should be able to do Embedded C programming & Python Programming.
- Students should be able to perform experiments on different development boards.
- Students should get introduced with application of IoT in field of heath care.

Module I	(Any three practical's/ Programs)
	Understanding and connectivity of Raspberry-Pi board with a Zigbee
	module. Creating a network application for communication between two
	devices using Zigbee or any other constrained device protocol.
Module II	(Any three practical's/ Programs)
	Interface generic Biomedical (various types of sensors) used in Smart
	Healthcare. Measure parameters: Normal Heart Rate, Measure the heart
	abnormality conditions and Real-time streaming data in healthcare
	applications through sensor signals.
Module III	(Any three practical's/ Programs)
	Identify the interfacing of Bluetooth module to create local sensor network
	and interfacing of GSM module to make node as a gateway. Apply IoT
	Gateway using WiFi and Ethernet.
Module IV	Project work
	Check Software analysis of real time ECG data.
	Design an application for IoT in Health care sector.
Text Books:	
	"Emerging Technologies for Health and Medicine: VirtualReality,
1.	Augmented Reality, Artificial Intelligence, Internet of Things,
	Robotics, Industry 4.0", Dac-Nhuong Le, Wiley, 2019
2.	"Introduction to IoT", S. Misra, A. Mukherjee, and A.
	Roy CambridgeUniversity Press, 2017
	"The Internet of Things: Do-It-Yourself at Home Projectsfor Arduino,
	Raspberry Pi and Beagle Bone Black", Donald Norris, 2014.
Additional M aterial:	
1.	Research Papers

Programme Name	M. Tech. IoT, Semester-II (Elective IV)
Course Code	EEIT5052T
Course Title	Edge Computing

At the end of successful completion of the course, students will be able to:

- Comprehend concepts Edge Computing based on sensing and Internet connectivity.
- Identify and describe the key architectural features of Edge Computing and their network.
- Conceptualize applications implementing edge computing

COURSE CONTENTS

Module I	IoT and Edge Computing Definition
	History and potential of IoT, IoT and Edge Computing use cases and deployment: Smart city IoT, Government and military IoT, Industry and manufacturing, Energy, Healthcare.
Module II	Secure Fog-Cloud of Things: Architectures, Opportunities & Challenges
	IoT Architecture and Core IoT, Collaborative and Integrated Edge Security Architecture, A connected ecosystem, Threat and security in IoT.
Module III	Sensors, Endpoints, and Power Systems
	A Systemic IoT–Fog–Cloud Architecture for Big-Data Analytics and Cyber Security Systems. Functional examples.
Module IV	Communications and Information Theory
	Communications theory and Information theory and the radio spectrum, Limitations of Wireless Communication.
Module V	Non-IP and IP Protocols
	Non-IP Based WPAN;802.15 standards, Zigbee, Z-wave, Bluetooth. IP-Based WPAN and WLAN, TCP/IP, WPAN with IP – 6LoWPAN, IEEE 802.11 protocols and WLAN, Edge to Cloud Protocols, MQTT, Constrained Application Protocol.
Module VI	Security and Organizational Strategy
	IoT and Edge Security, Physical and hardware security, Shell security, Cryptography, Software-Defined Perimeter, Blockchains and cryptocurrencies in IoT, Government regulations and intervention.
Text Books:	
1.	"IoT and Edge Computing for Architects" Perry Lea,"-second edition, Packt, March, 2020.
2.	"Secure EdgeComputing: Applications, Techniques and Challenges", Mohiuddin Ahmed (Editor), Paul Haskell-Dowland (Editor), CRC press, first edition, August 2021.
Additional N	Aaterial:
1.	Research Articles/Papers

Programme Name	M. Tech. (IoT), SEMESTER – II (Elective -IV)
Course Code	EEIT5052P
Course Title	Edge Computing (LAB)

- Students should be able to do Python Programming.
- Identify and understand the machine learning elements and algorithms.
- Students should get introduced with an application of edge computing.

Module I	Overview (Any three practical's/ Programs)
	Programming for IOT: R- programming, Python Libraries, Cloud platform
	Examining Machine Learning for IoT.
Module II	(Any three practical's/ Programs)
	Explore Machine Learning with Python.
	Perform data classification using any machine learning algorithm.
Module III	(Any three practical's/ Programs)
	Deploy IoT Edge module to a virtual Linux device.
	Deploy IoT Edge module to a Windows device.
Module IV	Project work
	Principle of Installation of Linux Operating System porting.
	Use IoT edge device as a gateway.
Text Books:	
1.	, "Mobile Computing," Asoke K Talukder and Roopa R Yavagal Tata
	McGraw Hill, 2010
	"Secure Edge Computing: Applications, Techniques and Challenges",
2.	Mohiuddin Ahmed (Editor), Paul Haskell-Dowland (Editor), CRC press,
	first edition, August 2021.
Additional Material:	
1.	Research Papers

Programme Name	M. Tech. (IoT), SEMESTER II
Course Code	EEIT5053T
Course Title	IOT Application and Web Development

COURSE OBJECTIVES:

- TO acquire specific scripting knowledge to develop interactive applications and to understand the basics of android application development.
- To apply the programming skills in developing application pertaining to Industrial, medical, agricultural,

COURSE OUTCOMES:

- Understand the concept of basic fundamentals of IIOT and programming skills in developing application pertaining to medical, agricultural.
- Understand the concept Mobile app Development.
- Understand the concept programming skills in developing Wi-Fi Programming.
- Understand the concept programming skills for Embedded Web Development.

Module 1: Introduction of IIOT Fundamentals

IIoT Fundamentals and Components, Industrial, Manufacturing, Monitoring, Control, Optimization and Autonomy, Introduction to Hadoop and big data analytics

Module 2: Smart Farming and Healthcare Applications

Weather monitoring, Precision farming, Smart Greenhouse, Drones for pesticides. Energy Consumption Monitoring, Smart Energy Meters, Home automation, Smart Grid and Solar Energy, Harvesting, Intelligent Parking, Data lake services scenarios. Architecture of IoT for Healthcare Applications

Module 3: Mobile app Development

Mobile app development: Android Development environment, Simple UI Layouts and layout properties, GUI objects, Event Driven Programming, opening and closing a Database.

Module 4: Wi-Fi Programming

Wi-Fi Access Point: Wi-Fi Network, Access Point, ESP32 Wi-Fi Networking: Access Point, Wi-Fi Station, Station, ESP32 Wi-Fi Networking, TCP Server Internet Protocol Suite TCP Server ESP32 TCP. TCP Client: ESP32 TCP,

HTTP Server, Hyper Text Transfer Protocol ,HTTP Server ,ESP32 HTTP Server HTTP Client :HTTP Client ,ESP32 HTTP Client .

Module 5: Embedded Web Development

Web Server:Web Server ,ESPAsyncWebServer Library, HyperText Markup Language (HTML):HyperText Markup Language (HTML), Web Page Data Exchange:Web Page Data Exchange , LED ,HTTP GET and POST Methods, JavaScript :JavaScript: Example Code: Dimming an LED with JS ,Example Code: Reading a Physical Button with JS ,Example Code: Reading the DHT11 Sensor with JS ,Wrapping Up: AJAX Technique

Reference books

- John Dean, Web Programming with HTML5, CSS and JavaScript, 2018, Jones and Bartlett Publishers Inc., ISBN-10: 9781284091793
- DiMarzio J. F., Beginning Android Programming with Android Studio, 2016, 4th ed., Wiley, ISBN-10: 9788126565580
- Fadi Al-Turjman, Intelligence in IoT- enabled Smart Cities, 2019, 1st edition, CRC Press, ISBN-10: 1138316849.
- Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things: Create a powerful industrial IoT infrastructure using Industry 4.0, 2018, Packt Publishing.

- Wiely,F Hasan, Internet Of Things A To Z: Technologies And Applications,IEEE press.
- Subhas Chandra Mukhopadhyay, Smart Sensing Technology for griculture and Environmental Monitoring, 2012, Springer, ISBN-10: 3642276377
- Vankamamidi S. Naresh1, Suryateja S. Pericherla, Pilla Sita Rama Murty, Sivaranjani Reddi, Internet of Things in Healthcare: Architecture, Applications, Challenges, and Solutions, International Journal of Computer Systems Science & Engineering, vol 35 no 6 November 2020
- Erwin Ouyang, Hands-On IoT: Wi-Fi and Embedded Web Development, Developing with ESP32, Arduino, C/C++, HTML, CSS, and JavaScript by Examples,M

Programme Name	M. Tech. (IoT), SEMESTER II
Course Code	EEIT5053P
Course Title	IOT Application and Web Development-Lab

COURSE OBJECTIVES:

- TO acquire specific scripting knowledge to develop interactive applications and to understand the basics of android application development.
- To apply the programming skills in developing application pertaining to Industrial, medical, agricultural,

COURSE OUTCOMES:

- Understand the concept of basic fundamentals of IIOT and programming skills in developing application pertaining to medical, agricultural.
- Understand the concept Mobile app Development.
- Understand the concept programming skills in developing Wi-Fi Programming.
- Understand the concept programming skills for Embedded Web Development.

Module 1: Introduction of IIOT Fundamentals

- 1 .Apply HTML and CSS for developing web forms to acquire and process user & sensor data.
- 2. Data analysis by using Hadoop

Module 2: Smart Farming and Healthcare Applications

- 1.IoT-Based Health Monitoring System Development and Analysis.
- 2. IoT-Based Agriculture monitoring system development.

Module 3: Mobile app Development

1.Implement mobile application using android SDK

Module 4: Wi-Fi Programming

- 1.To implement code for ESP32 Wi-Fi Networking: Access Point for three mode: AP mode, Station mode, Combined AP-STA mode. Combined AP-STA mode.
- 2. To create a TCP server for controlling an LED from TCP client by sending specified commands.
- 3. To create a TCP client that connects to a TCP server.
- 4. To create a simple HTTP server on top of a TCP server and also to create a simple HTTP client on top of a TCP client.

Module 5: Embedded Web Development

To implement code for Simple web server using ESPAsyncWebServer.

To implement code for Web Server for Controlling an LED and Dimming an LED.

To implement code for Web Server for Reading a Physical Button.

Reference books

- John Dean, Web Programming with HTML5, CSS and JavaScript, 2018, Jones and Bartlett Publishers Inc., ISBN-10: 9781284091793
- DiMarzio J. F., Beginning Android Programming with Android Studio, 2016, 4th ed., Wiley, ISBN-10: 9788126565580
- Fadi Al-Turjman, Intelligence in IoT- enabled Smart Cities, 2019, 1st edition, CRC Press, ISBN-10: 1138316849.
- Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things: Create a powerful industrial IoT infrastructure using Industry 4.0, 2018, Packt Publishing.
- Wiely,F Hasan, Internet Of Things A To Z: Technologies And Applications,IEEE press.
- Subhas Chandra Mukhopadhyay, Smart Sensing Technology for griculture and Environmental

- Monitoring, 2012, Springer, ISBN-10: 3642276377
- Vankamamidi S. Naresh1, Suryateja S. Pericherla, Pilla Sita Rama Murty, Sivaranjani Reddi, Internet of Things in Healthcare: Architecture, Applications, Challenges, and Solutions, International Journal of Computer Systems Science & Engineering, vol 35 no 6 November 2020
- Erwin Ouyang, Hands-On IoT: Wi-Fi and Embedded Web Development, Developing with ESP32, Arduino, C/C++, HTML, CSS, and JavaScript by Examples

Programme Name	M. Tech. (IoT), SEMESTER – II (Open Elective)
Course Code	EEIT5062S
Course Title	Mathematical Foundation Course for Data Analytics

Course Objective

- The course will introduce the fundamental concepts of linear algebra, probability and statistics required for a program in data science.
- To enable learners to develop knowledge and skills in current and emerging areas of data analytics.
- To critically assess and evaluate business and technical strategies for data analytics.
- To demonstrate expert knowledge of data analysis, statistics, tools, techniques and technologies of data analytics.

Course Outcomes

- Ability to use the mathematical concepts in the field of data science.
- Employ the techniques and methods related to the area of data science in variety of applications.
- Apply logical thinking to understand and solve the problem in context.

Module 1: Introduction of Data Science

Basics of Data Science: Introduction; Typology of problems; Importance of linear algebra, statistics and optimization from a data science perspective; Structured thinking for solving data science problems.

Module 2: Linear Algebra

Linear Algebra: Matrices and their properties (determinants, traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix factorizations; Inner products; Distance measures; Projections; Notion of hyperplanes; half-planes.

Module 3: Probability, Statistics and Random Processes:

Probability, Statistics and Random Processes: Probability theory and axioms; Random variables; Probability distributions and density functions (univariate and multivariate); Expectations and moments; Covariance and correlation; Statistics and sampling distributions; Hypothesis testing of means, proportions, variances and correlations; Confidence (statistical) intervals; Correlation functions; White-noise process

Module 4 : Optimization Techniques

Optimization: Unconstrained optimization; Necessary and sufficiency conditions for optima; Gradient descent methods; Constrained optimization, KKT conditions; Introduction to nongradient techniques; Introduction to least squares optimization; Optimization view of machine learning. Introduction to Data Science Methods: Linear regression as an exemplar function approximation problem; Linear classification problems.

Reference books

- 1. "Introduction to Linear Algebra", G. Strang. Wellesley-Cambridge Press, Fifth edition, 2016.
- 2. "Random Data: Analysis and Measurement Procedures", Bendat, J. S. and A. G. Piersol. fourth Edition. John Wiley & Sons, Inc., NY, USA, 2010
- 3. "Applied Statistics and Probability for Engineers", Montgomery, D. C. and G. C. Runger. Fifth Edition. John Wiley & Sons, Inc., NY, USA, 2011.
- 4. "Optimization by Vector Space Methods", David G. Luenberger, John Wiley & Sons (NY), 1969.
- 5. "Doing Data Science", Cathy O'Neil and Rachel Schutt, O'Reilly Media, 2013.