## DR. ARIJIT SINHABABU



Assistant Professor (Tenure), Department of Production Engineering Veermata Jijabai Technological Institute (VJTI) Matunga (East), Mumbai - 400019 (+91) 85099-98330 / 94756-00982 asinhasbabu@vjti.ac.in arijit.iitbbs@gmail.com

# **SUMMARY**

PROFESSIONAL An Assistant Professor (Tenure) at VJTI, Mumbai, with postdoctoral experience from IIT Bombay and a Ph.D. from IIT Bhubaneswar. My research focuses on developing high-fidelity computational models for complex fluid dynamics and materials science problems. I specialize in Direct Numerical Simulation (DNS) and Phase-Field methods with applications in advanced manufacturing processes, solidification, and microstructure evolution, aiming to contribute to impactful research and quality teaching.

### **EDUCATION**

# Indian Institute of Technology Bhubaneswar

Oct 2021

Doctor of Philosophy (Ph.D.), Mechanical Engineering

## Indian Institute of Technology Bhubaneswar

July 2014

Master of Technology (M.Tech.), Mechanical Engineering CGPA: 8.59/10.00

# West Bengal University of Technology (WBUT)

May 2012

Bachelor of Technology (B.Tech.), Mechanical Engineering CGPA: 8.28/10.00

# **ACADEMIC &** RESEARCH **EXPERIENCE**

Veermata Jijabai Technological Institute (VJTI), Mumbai July 2025

- Present

Assistant Professor (Tenure), Department of Production Engineering

- Teaching undergraduate and postgraduate courses including Operations Research, FEM, Supply Chain Management, and Lean Manufacturing.
- Mentoring B.Tech. and M.Tech. student projects in computational modeling of manufacturing processes.

## Indian Institute of Technology Bombay

Jan 2022 – Feb 2025

Institute Post-doctoral Fellow, Department of Mechanical Engineering

- Developed a high-order phase-field solver for binary alloy solidification at high Lewis numbers.
- Created a micro-elasticity-based solver for sintering problems.
- Served as a Teaching Assistant in the 'Makerspace' laboratory for two semesters.

#### Indian Institute of Technology Bhubaneswar July 2014 – Oct 2021 Ph.D. Research Scholar, School of Mechanical Sciences

- Developed and validated a novel dealiasing scheme (RPSM) for accurate Direct Numerical Simulation (DNS) of under-resolved flows with strong shocks and gradients.
- Created an efficient, high-order pseudo-spectral Phase-Field model for simulating dendritic solidification without requiring adaptive mesh refinement

(AMR).

• Implemented an Immersed Boundary-based volume penalization scheme to study microstructure evolution in complex geometries using Cahn-Hilliard equations.

# RESEARCH INTERESTS

- Computational Modeling of Manufacturing Processes (Additive Manufacturing, Welding)
- Phase-Field Modeling of Solidification and Microstructure Evolution
- Direct Numerical Simulation (DNS) of Multiphase and Turbulent Flows
- High-Performance Computing for Thermal-Fluid Systems

# TEACHING INTERESTS

- Numerical Methods in Engineering
- Computational Materials Science
- Computational Fluid Dynamics (CFD)
- Fluid Mechanics & Heat Transfer
- Modeling of Manufacturing Processes

# TECHNICAL SKILLS

Programming Languages: Python, C++, C

Software & Libraries: MATLAB, CUDA, MPI, OpenFOAM, FFTW3

Familiar With: COMSOL, ANSYS Fluent, Git Version Control

## **PUBLICATIONS**

## Peer-Reviewed Journal Articles

- [1] Sinhababu, A., & Karagadde, S. (2025). A FFT-based phase-field framework for simulating dendritic growth in binary alloy. *Journal of Computational Physics*, 522, 113600.
- [2] **Sinhababu, A.**, & Bhattacharya, A. (2022). A pseudo-spectral based efficient volume penalization scheme for Cahn-Hilliard equations in complex geometries. *Mathematics and Computers in Simulation*, 198, 213-233.
- [3] **Sinhababu, A.**, & Bhattacharya, A. (2022). A fixed grid based accurate phase-field method for dendritic solidification in complex geometries. *Computational Materials Science*, 201, 110973.
- [4] **Sinhababu, A.**, & Ayyalasomayajula, S. (2021). An Improved Dealiasing Scheme for the Fourth Order Runge-Kutta Method. *Intl. Journal for Numerical Methods in Fluids*, 93(2), 506-538.
- [5] Sinhababu, A., Bhattacharya, A., & Ayyalasomayajula, S. (2021). An Efficient Pseudo-spectral based Phase Field Method for Dendritic Solidification. *Computational Materials Science*, 188, 109967.
- [6] Sinhababu, A., & Ayyalasomayajula, S. (2021). Accuracy and Computational Efficiency of Dealiasing Schemes for the DNS of Under Resolved Flows. *Mathematics and Computers in Simulation*, 182, 695-722.

## ACHIEVEMENTS • Qualified GATE 2012 in Mechanical Engineering.

• Developed high-fidelity DNS and Phase-Field codes from scratch in C++ and FFTW, implementing novel dealiasing schemes during Ph.D. research.

REFERENCES Dr. Anirban Bhattacharya, Associate Professor, IIT Bhubaneswar

Email: anirban@iitbbs.ac.in

Prof. Shyamprasad Karagadde, Professor, IIT Bombay

Email: s.karagadde@iitb.ac.in

**Prof. M. P. Gururajan**, Professor, IIT Bombay

Email: guru.mp@iitb.ac.in